LANet for medical image segmentation
https://doi.org/10.21122/2309-4923-2025-1-44-53
Abstract
The paper presents an original LANet model for improving medical image segmentation results based on MobileViT neural network. The developed and integrated Efficient Fusion Attention and Adaptive Feature Fusion blocks improve the quality of feature extraction and reduce data redundancy. The effectiveness of the presented blocks is validated by multiple experiments, including accuracy evaluation on different datasets, based on metrics such as Dice, Precision, Recall, mIoU, model performance evaluation, and ablation study.
About the Authors
Di ZhaoBelarus
Di Zhao, Postgraduate at the Department of Information Technologies in Automated Systems
Minsk
Yi Tang
Belarus
Yi Tang, Postgraduate at the Department of Information Technologies in Automated Systems
Minsk
D. Y. Pertsau
Belarus
Pertsau D., PhD, Associate Professor, Associate Professor of Electronic Computing Machines Department
Minsk
A. B. Gourinovitch
Belarus
Gourinovitch A.B., Assistant Professor at the Department of Information Technologies in Automated Systems
Minsk
D. V. Kupryianava
Belarus
Kupryianava D., Senior Lecturer, Electronic Computing Machines Department
Minsk
References
1. Taghanaki, S.A. Deep semantic segmentation of natural and medical images: a review / S.A.Taghanaki, [etc.] // Artificial Intelligence Review. – 2021. – Vol. 54 – P. 137–178. – DOI: 10.1007/s10462-020-09854-1
2. Tong, L. Aclustering-aidedapproachfordiagnosisprediction: Acasestudyofelderlyfall/ L. Tong,[etc.]// 2022 IEEE 46th Annual Computers, Software, and Applications Conference. – 2022. – P. 337–342. – DOI: 10.1109/COMPSAC54236.2022.00054
3. Yu, H. A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation / H. Yu, F. He, Y. Pan // Multimedia Tools and Applications. – 2020. – Vol. 79. – P.5743-5765. – DOI: 10.1007/s11042-019-08493-1
4. Mehta, S. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer / S. Mehta, M. Rastegari // arXiv preprint. – 2021. – arXiv: 2110.02178.
5. Li, J. SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy / J. Li, Y. Wen, L. He // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – 2023. – P. 6153-6162. – DOI: 10.1109/CVPR52729.2023.00596
6. Qiu, J. SlimConv: Reducing Channel Redundancy in Convolutional Neural Networks by Features Recombining / J. Qiu, [etc.] // IEEE Transactions on Image Processing. – 2021. – Vol. 30. – P. 6434-6445. – DOI: 10.1109/TIP.2021.3093795
7. Oktay, O. Attention U-Net: Learning Where to Look for the Pancreas / O. Oktay [etc.] // arXiv preprint. – 2018. – arXiv:1804.03999.
8. Jha, D. ResUNet++: An Advanced Architecture for Medical Image Segmentation / D. Jha, [etc.] // 2019 IEEE International Symposium on Multimedia (ISM). – 2019. – P. 225-235. – DOI: 10.1109/ISM46123.2019.00049
9. Zhou, Z. UNet++: A Nested U-Net Architecture for Medical Image Segmentation / Z. Zhou, [etc.] // Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. – 2018. – P. 3-11. – DOI: 10.1007/978-3-030-00889-5_1
10. Jha, D. DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation / D. Jha [etc.] // 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). – 2020. – P. 558-564. – DOI: 10.1109/CBMS49503.2020.00111
11. Berman, M. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks / M. Berman, T.A. Rannen, M.B. Blaschko // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). – 2018. – P. 4413-4421. – DOI: 10.1109/CVPR.2018.00464
12. Jham, D. Kvasir-SEG: A Segmented Polyp Dataset / D. Jham, [etc.] // International Conference on Multimedia Modeling. – 2019. – P. 451-462. – DOI: 10.1007/978-3-030-37734-2_37
13. Bernal, J. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians / J. Bernal, [etc.] // Computerized Medical Imaging and Graphics. – 2015. – Vol. 43. – P. 99-111. – DOI: 10.1016/j.compmedimag.2015.02.007
14. Tajbakhsh, N. Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information / N. Tajbakhsh, S.R. Gurudu, J. Liang // IEEE Transactions on Medical Imaging. – 2016. – Vol. 35, Issue 2. – P. 630-644. – DOI: 10.1109/TMI.2015.2487997.
15. Caicedo, J. C. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl / J.C. Caicedo, [etc.] // Nature methods. – 2019. – Vol.16. – P. 1247-1253. – DOI: 10.1038/s41592-019-0612-7
16. Deng, J. ImageNet: A large-scale hierarchical image database / J. Deng, [etc.] // 2009 IEEE Conference on Computer Vision and Pattern Recognition. – 2009. – P. 248-255. – DOI: 10.1109/CVPR.2009.5206848
17. T. Ronneberger, O. U-Net: Convolutional Networks for Biomedical Image Segmentation / O. Ronneberger, P. Fischer, Brox // International Conference on Medical Image Computing and Computer-Assisted Intervention. – 2015. – P. 234-241. – DOI: 10.1007/978-3-319-24574-4_28
18. Tomar, N. K. FANet: a feedback attention network for improved biomedical image segmentation / N.K. Tomar, [etc.] // IEEE Transactions on Neural Networks and Learning Systems. – 2022. – Vol. 34, Issue 11. – P. 9375-9388. – DOI: 10.1109/tnnls.2022.3159394
19. Long, J. Fully convolutional networks for semantic segmentation / J. Long, E. Shelhamer, T. Darrell // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – 2015. – P. 3431-3440. – DOI: 10.1109/CVPR.2015.7298965
20. Fan, D. PraNet: Parallel Reverse Attention Network for Polyp Segmentation / D. Fan, [etc.] // International conference on Medical Image Computing and Computer Assisted Intervention. – 2020. – P. 263-273. – DOI: 10.1007/978-3-030-59725-2_26
Review
For citations:
Zhao D., Tang Y., Pertsau D.Y., Gourinovitch A.B., Kupryianava D.V. LANet for medical image segmentation. «System analysis and applied information science». 2025;(1):44-53. (In Russ.) https://doi.org/10.21122/2309-4923-2025-1-44-53