Preview

LANet for medical image segmentation

https://doi.org/10.21122/2309-4923-2025-1-44-53

Abstract

The paper presents an original LANet model for improving medical image segmentation results based on MobileViT neural network. The developed and integrated Efficient Fusion Attention and Adaptive Feature Fusion blocks improve the quality of feature extraction and reduce data redundancy. The effectiveness of the presented blocks is validated by multiple experiments, including accuracy evaluation on different datasets, based on metrics such as Dice, Precision, Recall, mIoU, model performance evaluation, and ablation study.

About the Authors

Di Zhao
Belarusian State University of Informatics and Radioelectronics
Belarus

Di Zhao, Postgraduate at the Department of Information Technologies in Automated Systems

Minsk



Yi Tang
Belarusian State University of Informatics and Radioelectronics
Belarus

Yi Tang, Postgraduate at the Department of Information Technologies in Automated Systems

Minsk



D. Y. Pertsau
Belarusian State University of Informatics and Radioelectronics
Belarus

Pertsau D., PhD, Associate Professor, Associate Professor of Electronic Computing Machines Department

Minsk



A. B. Gourinovitch
Belarusian State University of Informatics and Radioelectronics
Belarus

Gourinovitch A.B., Assistant Professor at the Department of Information Technologies in Automated Systems

Minsk



D. V. Kupryianava
Belarusian State University of Informatics and Radioelectronics
Belarus

Kupryianava D., Senior Lecturer, Electronic Computing Machines Department

Minsk



References

1. Taghanaki, S.A. Deep semantic segmentation of natural and medical images: a review / S.A.Taghanaki, [etc.] // Artificial Intelligence Review. – 2021. – Vol. 54 – P. 137–178. – DOI: 10.1007/s10462-020-09854-1

2. Tong, L. Aclustering-aidedapproachfordiagnosisprediction: Acasestudyofelderlyfall/ L. Tong,[etc.]// 2022 IEEE 46th Annual Computers, Software, and Applications Conference. – 2022. – P. 337–342. – DOI: 10.1109/COMPSAC54236.2022.00054

3. Yu, H. A scalable region-based level set method using adaptive bilateral filter for noisy image segmentation / H. Yu, F. He, Y. Pan // Multimedia Tools and Applications. – 2020. – Vol. 79. – P.5743-5765. – DOI: 10.1007/s11042-019-08493-1

4. Mehta, S. MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer / S. Mehta, M. Rastegari // arXiv preprint. – 2021. – arXiv: 2110.02178.

5. Li, J. SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy / J. Li, Y. Wen, L. He // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – 2023. – P. 6153-6162. – DOI: 10.1109/CVPR52729.2023.00596

6. Qiu, J. SlimConv: Reducing Channel Redundancy in Convolutional Neural Networks by Features Recombining / J. Qiu, [etc.] // IEEE Transactions on Image Processing. – 2021. – Vol. 30. – P. 6434-6445. – DOI: 10.1109/TIP.2021.3093795

7. Oktay, O. Attention U-Net: Learning Where to Look for the Pancreas / O. Oktay [etc.] // arXiv preprint. – 2018. – arXiv:1804.03999.

8. Jha, D. ResUNet++: An Advanced Architecture for Medical Image Segmentation / D. Jha, [etc.] // 2019 IEEE International Symposium on Multimedia (ISM). – 2019. – P. 225-235. – DOI: 10.1109/ISM46123.2019.00049

9. Zhou, Z. UNet++: A Nested U-Net Architecture for Medical Image Segmentation / Z. Zhou, [etc.] // Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. – 2018. – P. 3-11. – DOI: 10.1007/978-3-030-00889-5_1

10. Jha, D. DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation / D. Jha [etc.] // 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS). – 2020. – P. 558-564. – DOI: 10.1109/CBMS49503.2020.00111

11. Berman, M. The Lovasz-Softmax Loss: A Tractable Surrogate for the Optimization of the Intersection-Over-Union Measure in Neural Networks / M. Berman, T.A. Rannen, M.B. Blaschko // 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). – 2018. – P. 4413-4421. – DOI: 10.1109/CVPR.2018.00464

12. Jham, D. Kvasir-SEG: A Segmented Polyp Dataset / D. Jham, [etc.] // International Conference on Multimedia Modeling. – 2019. – P. 451-462. – DOI: 10.1007/978-3-030-37734-2_37

13. Bernal, J. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians / J. Bernal, [etc.] // Computerized Medical Imaging and Graphics. – 2015. – Vol. 43. – P. 99-111. – DOI: 10.1016/j.compmedimag.2015.02.007

14. Tajbakhsh, N. Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information / N. Tajbakhsh, S.R. Gurudu, J. Liang // IEEE Transactions on Medical Imaging. – 2016. – Vol. 35, Issue 2. – P. 630-644. – DOI: 10.1109/TMI.2015.2487997.

15. Caicedo, J. C. Nucleus segmentation across imaging experiments: the 2018 Data Science Bowl / J.C. Caicedo, [etc.] // Nature methods. – 2019. – Vol.16. – P. 1247-1253. – DOI: 10.1038/s41592-019-0612-7

16. Deng, J. ImageNet: A large-scale hierarchical image database / J. Deng, [etc.] // 2009 IEEE Conference on Computer Vision and Pattern Recognition. – 2009. – P. 248-255. – DOI: 10.1109/CVPR.2009.5206848

17. T. Ronneberger, O. U-Net: Convolutional Networks for Biomedical Image Segmentation / O. Ronneberger, P. Fischer, Brox // International Conference on Medical Image Computing and Computer-Assisted Intervention. – 2015. – P. 234-241. – DOI: 10.1007/978-3-319-24574-4_28

18. Tomar, N. K. FANet: a feedback attention network for improved biomedical image segmentation / N.K. Tomar, [etc.] // IEEE Transactions on Neural Networks and Learning Systems. – 2022. – Vol. 34, Issue 11. – P. 9375-9388. – DOI: 10.1109/tnnls.2022.3159394

19. Long, J. Fully convolutional networks for semantic segmentation / J. Long, E. Shelhamer, T. Darrell // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – 2015. – P. 3431-3440. – DOI: 10.1109/CVPR.2015.7298965

20. Fan, D. PraNet: Parallel Reverse Attention Network for Polyp Segmentation / D. Fan, [etc.] // International conference on Medical Image Computing and Computer Assisted Intervention. – 2020. – P. 263-273. – DOI: 10.1007/978-3-030-59725-2_26


Review

For citations:


Zhao D., Tang Y., Pertsau D.Y., Gourinovitch A.B., Kupryianava D.V. LANet for medical image segmentation. «System analysis and applied information science». 2025;(1):44-53. (In Russ.) https://doi.org/10.21122/2309-4923-2025-1-44-53

Views: 177


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)