Hamiltanian minimum principle for optimum control of the distance learning process
https://doi.org/10.21122/2309-4923-2022-1-48-50
Abstract
A mathematical learning model based on control theory in the form of an inhomogeneous linear differential equation is proposed. Analytical formulas and graphs for optimal program control and optimal trajectory are obtained from the principle of the minimum of the Hamiltonian for autonomous systems.
About the Author
S. Ya. ZhukovichBelarus
Siarhei Ya. Zhukovich, software engineer
References
1. Listopad, N.I., Vorotnickij, Ju.I. Jelektronnye sredstva obuchenija: sostojanie, problemy i perspektivy / N.I. Listopad, Ju.I. Vorotnickij // Vysshaja shkola – 2008. – №6 – S. 6–14.
2. Zhukovich S.Ya. Mathematical method for improving the quality of education at a university / S.Ya. Zhukovich // Vestnik Belorusskogo gosudarstvennogo jekonomicheskogo universiteta – 2012. – №5. – S.36–42.
3. Mayer, R.V. Cyber Pedagogy: Simulation of the Learning Process / R.V. Mayer. – Glazov, GGPI, 2013. – 138 c.
4. Pontrjagin, L.S. Mathematical theory of optimal processes / L.S. Pontrjagin [i dr.]. – Izd.2. M.: Nauka 1969. – 384 s.
5. Chaki, F. Modern control theory. Non-linear, optimal and adaptive systems / F. Chaki. – M:Mir, – 1975. – 420 s.
Review
For citations:
Zhukovich S.Ya. Hamiltanian minimum principle for optimum control of the distance learning process. «System analysis and applied information science». 2022;(1):48-50. (In Russ.) https://doi.org/10.21122/2309-4923-2022-1-48-50