Preview

«System analysis and applied information science»

Advanced search

NEW EXPANSIONS OF BOOLEAN FUNCTIONS ON EXCLUSIVE OR OPERATION IN LOGICAL SYSTEMS DESIGN

Abstract

The Boolean function expansions and representation forms which are based on exclusive or operation are a key facility for design, test and diagnosis of digital systems and computer programs. The Zhegalkin polynomials, ReedMuller expressions and functional binary decision diagrams are among them. In the paper, novel expansions and Boolean function representation forms that are constructed using the partial logic, minimization operation and exclusive or operation are proposed. They generalize the positive and negative Davio expansions, take into account the orthogonality conditions for the minimization operation products and provide the creation

About the Author

A. A. Prihozhy
Belarusian National Technical University
Belarus


References

1. Shannon, C. E. The Synthesis of Two Terminal Switching Circuits / C. E. Shannon // Bell System Technical Journal. – Vol. 28. –1949. – № 1.– P. 59–98.

2. Прихожий, А. А. Частично определенные логические системы и алгоритмы / А. А. Прихожий // БНТУ, Техническая литература. – 2013. – 343 с.

3. Prihozhy, A. A. If-Diagrams: Theory and Application / A. A. Prihozhy // Proc. of the European Conference PAT-MOS’97. – UCL, Belgium, 1997. – P. 369 – 378.

4. Прихожий, А. А. Обобщение разложения Шеннона для частично определенных функций: теория и применение / А. А. Прихожий // Системный анализ и прикладная информатика, № 1, 2013. – С. 3–9.

5. Prihozhy, A. A. Methods of Partial Logic and If-Decision Diagrams for Synthesis and Formal Verification of Digital Circuits / A. A. Prihozhy, B. Becker // DAAD Research Report. – Freiburg University, Germany, 2000. – 30 p.


Review

For citations:


Prihozhy A.A. NEW EXPANSIONS OF BOOLEAN FUNCTIONS ON EXCLUSIVE OR OPERATION IN LOGICAL SYSTEMS DESIGN. «System analysis and applied information science». 2014;(1-3):9-16. (In Russ.)

Views: 2496


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)