IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM
Abstract
This paper extends the recently introduced approach for modeling and solving the optimal control problem of fixedswitched mode DC-DC power converter. DCDC converters are a class of electric power circuits that used extensively in regulated DC power supplies, DC motor drives of different types, in Photovoltaic Station energy conversion and other applications due to its advantageous features in terms of size, weight and reliable performance. The main problem in controlling this type converters is in their hybrid nature as the switched circuit topology entails different modes of operation, each of it with its own associated linear continuous-time dynamics.
This paper analyses the modeling and controller synthesis of the fixed-frequency buck DC-DC converter, in which the transistor switch is operated by a pulse sequence with constant frequency. In this case the regulation of the DC component of the output voltage is via the duty cycle. The optimization of the control system is based on the formation of the control signal at the output.
It is proposed to solve the problem of optimal control of a hybrid system based on the formation of the control signal at the output of the controller, which minimizes a given functional integral quality, which is regarded as a linear quadratic Letov-Kalman functional. Search method of optimal control depends on the type of mathematical model of control object. In this case, we consider a linear deterministic model of the control system, which is common for the majority of hybrid electrical systems. For this formulation of the optimal control problem of search is a problem of analytical design of optimal controller, which has the analytical solution.
As an example of the hybrid system is considered a step-down switching DC-DC converter, which is widely used in various electrical systems: as an uninterruptible power supply, battery charger for electric vehicles, the inverter in solar photovoltaic power plants.. A qualitative change in the projected illustration of the control signal, a sequence of control pulses and output management object (inverter).
About the Authors
A. A. LobatyBelarus
Professor, PhD in Engineering
Yu. N. Petrenko
Belarus
Associate Professor, PhD in Engineering
A. S. Abufanas
Belarus
Post-graduate student
I. Elzein
Belarus
Master of Science in Electronics Engineering Technology, Wayne State University, Michigan-USA
References
1. Metody klassicheskoj i sovremennoj teorii avtomaticheskogo upravlenija: Vol. 5 t. / pod red. K. A. Pupkova i N. D. Egupova. – M.: Izdatel’stvo MGTU im. N. Je. Baumana, 2004. – 4 t.
2. Spravochnik po teorii avtomaticheskogo upravlenija / pod red. A. A. Krasovskogo. – M.: Nauka, 1987. – 712 s.
3. Brajson A. Prikladnaja teorija optimal’nogo upravlenija / A. Brajson, Ho Ju– shi. – M.: Mir, 1972. – 544 s.
4. Metody optimizacii / pod red. V. S. Zarubina, A. P. Krishhenko. – M.: Izdatel’stvo MGTU im. N. Je. Baumana, 2003. – 440 s.
5. Teorija sistem avtomaticheskogo upravlenija / pod. red. V. L. Besekerskogo, E. P. Popova. – M.: Izd. Sankt-Peterburg, 2003. – 747 s.
6. Kazakov I. E. Metody optimizacii stohasticheskih sistem / I. E. Kazakov, D. I. Gladkov. – M.: Nauka, 1987. – 304 s.
7. Utkin V. I. Skol’zjashhee upravlenie jelektromehanicheskimi sistemami. / V. I. Utkin, V. J. Guldner, J. X. Shi.London, U. K.: Taylor & Francis, 1999. – 350 p.
8. Meleshin V. I. Tranzistornaja preobrazovatel’naja tehnika / V. I. Meleshin.-M.: Tehnosfera, 2005. – 632 s.
9. Priewasser R. Modelirovanie, upravlenie i realizacija impul’snyh preobrazovatelej postojannogo toka s peremennoj chastotoj raboty. / R. Priewasser, M. Agostinelly, C. Unterrieder, M. Stefano, M. Huemer // IEEE Transactions on Power Electronics, Vol. 29, no. 1, Jan. 2014, P. 287–301.
10. Belov G. A. Strukturnye modeli i issledovanie dinamiki impul’snyh preobrazovatelej / G. A. Belov // Jelektrichestvo. – 2008. – № 4. – S. 47–49.
11. Bass R. M. Chastotno-zavisimaja usrednennaja model’ preobrazovatelej postojannogo toka s shirotno-impul’snoj moduljaciej / R. M. Bass, B. Lehman // IEEE Transactions on Power Electronics, Vol. 11, no. 3, Mar. 1996, P. 89–98.
12. Imad Elzein, Petrenko Yu. N. Model’ uprezhdajushhego upravlenija sistemoj obespechenija maksimal’noj vyhodnoj moshhnosti solnechnoj batarei // Sistemnyj analiz i prikladnaja informatika, № 4, 2015, S. 17–25.
13. Geyer T., Parafotiou G., Frasca R., Morari M. Optimal’noe upravlenie preobrazovateljami postojannogo toka, IEEE Transactions on Power Electronics, Vol. 23, Sept. 2008, pp. 2454–2464.
14. Sotnikova M. V. Sintez robastnyh algoritmov upravlenija s prognozirujushhimi modeljami / M. V. Sotnikova // Sistemy upravlenija i informacionnye tehnologii. – T. 50, № 4. – 2012. – S. 99–102.
15. Kazakov I. E. Analiz sistem sluchajnoj struktury / I. E. Kazakov, V. M. Artem’ev, V. A. Buhalev. – M.: Nauka, 1993. – 270 s.
16. Lobatyj A. A. Analiticheskoe modelirovanie diskretnyh sistem s fazovym upravleniem / A. A. Lobatyj, V. L. Bus’ko, L. V. Rusak // Doklady BGUIR. – 2008. – № 3 (33). – S. 103–110.
17. Lobatyj A. A. Matematicheskoe modelirovanie gibridnyh jelektrotehnicheskih sistem / A. A. Lobatyj, Ju. N. Petrenko, A. Jel’zejn, A. S. Abufanas // Nauka i tehnika. – 2016. – № 4, t. 15. – S. 322–328.
18. Imad Elzein, DC-DC power converters modeling: from averaging to hybrid systems // V Sb. «Nauka-obrazovaniju, proizvodstvu, jekonomike». Mat 13-j MNTK, T. 1, 2015, S. 222.
Review
For citations:
Lobaty A.A., Petrenko Yu.N., Abufanas A.S., Elzein I. IMPULSE CONTROL HYBRID ELECTRICAL SYSTEM. «System analysis and applied information science». 2016;(4):46-52. (In Russ.)