Preview

TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL

Abstract

Computed tomography is still being intensively studied and widely used to solve a number of industrial and medical applications. The simultaneous algebraic reconstruction technique (SART) and Bayesian inference reconstruction (BIR) are considered as advantageous iteration methods that are most suitable for improving the quality of the reconstructed 3D-images. The paper deals with the parallel iterative algorithms to ensure the reconstruction of threedimensional images of the breast, recovered from a limited set of noisy X-ray projections. Algebraic method of reconstruction with simultaneous iterations – SART and iterative method for statistical reconstruction of BIR are deemed to be the most preferred iterative methods. We believe that these methods are particularly useful for improving the quality of breast reconstructed image. We use the graphics processor (GPU) to accelerate the process of reconstruction. Preliminary results show that all investigated methods are useful in breast reconstruction layered images. However, it was found that the method of classical tomosynthesis SAA is less efficient than iterative methods SART and BIR as the worst suppress the anatomical noise. Despite the fact that the estimated ratio of the contrast / noise ratio in the presence of internal structures with low contrast is higher for classical tomosynthesis method the SAA, its effectiveness in the presence of highly structured background is low. In our opinion the best results can be achieved using statistical iterative reconstruction BIR.

About the Authors

S. A. Zolotarev
Institute of Applied Physics of NAS of Belarus
Belarus

PhD in Engineering



M. A. Mirzavand
Belarusian National Technical University; Prilesie Logistic Center
Belarus
Post-graduate


References

1. Niklason L. T. Digital tomosynthesis in breast imaging. / L. T. Niklason // Radiology – 1997. – Vol. 205.– P. 399–406.

2. Wu T. Tomographic mammography using a limited number of low¬dose cone¬beam projection images / T. Wu // Med. Phys. – 2003. – Vol. 30. – P. 365–380.

3. Kopans D. Digital tomosynthesis and other applications / D. Kopans // RSNA Program Book 2005. – 2005. – P. 130.

4. Ziedses des Plante, B. G. Eine neue methode zur differenzierung in der roentgenographie (planigraphie) / B. G. Zied¬ ses des Plante // Acta Radiologica. – 1932. – Vol. 13. – P. 182–192.

5. Dobbins J. T., Godfrey D. J. Digital X¬Ray Tomosynthesis: current state of the art and clinical potential / J. T. Dob¬ bins, D. J. Godfrey // Phys. Med. Biol. – 2003. – Vol. 48. – P. 65–106.

6. Andersen A. H. Algebraic reconstruction in CT from limited views / A. H. Andersen // IEEE Trans. Med. Imag. – 1989. – Vol. 8. – P. 50–55.

7. Segal M. Fast shadows and lighting effects using texture mapping / M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E. Haeberli // SIGGRAPH’92. – 1992. – Vol. 26. – P. 249–252.

8. Vengrinovich V. L. Iterative methods of tomography / V. L. Vengrinovich, S. A. Zolotarev // Minsk: «Belorusskaya Nayka», – 2009. – 227 p.

9. Jia R. Q. A fast algorithm for the total variation model of image denoising / H. Q. Zhao // Adv. Comput. Math. – 2010.– Vol. 33.– P. 231–241.

10. Lange K., Fessler J. A. Globally Convergent Algorithms for Maximum a Posteriori Transmission Tomography / K. Lange, J. A. Fessler // IEEE Trans. on Image Processing. – 1995. – Vol. 8. – No 10. – P. 1430–1438.

11. Zolotarev S. A., Mirzavand M. A. Fast iterative kilovoltage cone beam tomography / S. A.. Zolotarev, M. A. Mirza¬ vand // «System analysis and applied information science». – 2015. – No 4. – P. 31–35. (In Russ.)


Review

For citations:


Zolotarev S.A., Mirzavand M.A. TOMOGRAPHIC MAMMOGRAPHY AND TOMOSYNTHESIS USING OPENGL. «System analysis and applied information science». 2016;(1):61-67.

Views: 1091


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)