Preview

Using of machine learning, neural networks, Internet of Things, blockchain technologies in education

https://doi.org/10.21122/2309-4923-2025-3-68-73

Abstract

The purpose of the article is to study the using of technologies: machine learning (ML), neural networks (NN), Internet of Things (IoT) and blockchain (BC) to improve the effectiveness of education. Thestudyexaminesthe limitations of traditional educationandtheimpactof digitalization. Theadvantagesandsystems from the separate use of machine learning and neural networks are presented: predicting academic performance, analyzing student behavior, and verifying knowledge. The IoT architecture in education is considered, consisting of three levels: perception, network and applications. The process of integrating ML, NN, IoT, and BC technologies has been developed, including data collection using IoT devices, analytical data processing using ML and NN, and reliable data storage using blockchain. Based on this scheme, the structure of the integration system is proposed, consisting of modules for data collection, intelligent analysis and storage, confirmation, and data protection.

About the Author

U. A. Vishnyakou
Belarusian State University of Informatics and Radioelectronics
Belarus

Uladzimir Anatolyevich Vishnyakou ‒ 
Doctor of Science, Professor.

Minsk



References

1. Adedoyin OB, Soykan E. Covid-19 pandemic and online learning: challenges and opportunities. Interactive learning environments. 2023;31(2):863-875. DOI: 10.1080/10494820.2020.1813180

2. Xiong Y, Ling Q, Li X. Ubiquitous e-teaching and e-learning: china’s massive adoption of online education and launching MOOCs internationally during the COVID-19 outbreak. Wireless communications and mobile computing. 2021;2021(1):6358976. DOI: 10.1155/2021/6358976

3. Shafiq H, Wani ZADr, Mahajan IM, Qadri U. Courses beyond borders: Acase study of MOOC platform Coursera. Library philosophy and practice (e-journal). 2017;(November):1566. Available at: https://digitalcommons.unl.edu/libphilprac/1566/

4. Thompson C. How Khan Academy is changing the rules of education. Wired Magazine. 2011;July 15. Available at: http://resources.rosettastone.com/CDN/us/pdfs/K-12/Wired_KhanAcademy.pdf

5. Oliveira PC, Cunha CJCA, Nakayama MK. Learning Management Systems (LMS) and e‒learning management: an integrative review and a research agenda. Journal of Information Systems and Technology Management. 2016;13(2):27-44. DOI: 10.4301/S1807-177520160002000001

6. Canfield W. ALEKS: A web-based intelligent tutoring system. Mathematics and computer education. 2001;35(2):152-158.

7. Wang H, Woodworth K. Evaluation of Rocketship Education use of DreamBox Learning`s online mathematics program. SRI International; 2011. 14 p. Available at: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://info. discoveryeducation.com/rs/063-SDC-839/images/ef-2011-08-SRI_Rocketship_Evaluation.pdf

8. Young A, Verhulst S. Creation immutable, stackable credentials through blockchain at MIT. GOVLAB; 2018. 9 p. Available at: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://blockchan.ge/blockchange-credentials.pdf

9. Hsieh W, Bi Z, Jiang C, Liu J, Peng B, Zhang S, et al. A comprehensive guide to Explainable AI: from classical models to LLMs. arXiv preprint; 2024:2412.00800. DOI: 10.48550/arXiv.2412.00800

10. Veselinov R, Grego, J. Duolingo effectiveness study: final report. City University of New York; 2012. 24 p. Available et: https://www.languagezen.com/pt/about/english/Duolingo_Efficacy_Study.pdf

11. Gamage SHPV, Ayres JR, Behrend MB. A systematic review of trends in using Moodle for teaching and learning. International Journal of STEM Education. 2022, 9:1-9. DOI: 10.1186/s40594-021-00323-x

12. Sunusi A. Developing an access control system for students identification in higher institutions of learning using biometric technnique. Kampala International University; 2019. 105 p. Available et: https://ir.kiu.ac.ug/bitstreams/013cfa6f-0d99-4250-b695-05d28caf7897/download

13. Vishnyakov VA, Kachan DA. Blockchain technology in education and IT medicine: models, algorithms, software: monograph. Minsk: RISH; 2023. 184 p. (In Russ.). Available at: https://libeldoc.bsuir.by/handle/123456789/52599

14. Tan E, Lerouge E, Du Caju J, Du Seuil D. Verification of education credentials on European Blockchain Service Infrastructure (EBSI): Action research in a cross-border use case between Belgium and Italy. Big data and cognitive computing. 2023;7(2):79. DOI: 10.3390/bdcc7020079

15. BitDegree-project review. Available et: https://vc.ru/u/387242-terra-cognito/91972-bitdegree-obzor-proekta (accessed: 11.01.2025).

16. Grether W, Kolvenbach S, Ruland R, Schutte J, Torres Ch, Wendland F. Blockchain for education: Lifelong learning passport. Proceeding of 1st ERCIM Blockchain workshop. 2018. Pp. 3-7. DOI: 10.18420/blockchain2018_07

17. Hoglund J, Lindemer S, Furuhed M, Raza S. PKI4IoT: Towards public key infrastructure for the Internet of Things. Computers and security. 2020,89(7):101658. DOI: 10.1016/j.cose.2019.10165


Review

For citations:


Vishnyakou U.A. Using of machine learning, neural networks, Internet of Things, blockchain technologies in education. «System analysis and applied information science». 2025;(3):68-73. (In Russ.) https://doi.org/10.21122/2309-4923-2025-3-68-73

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)