Preview

Remote sensing image target detection model integrating dynamic receptive field and snake convolution

https://doi.org/10.21122/2309-4923-2025-3-4-10

Abstract

To address the challenges of a high missed detection rate for small targets and strong interference from complex backgrounds in remote sensing image target detection, the paper proposes an improved YOLOv11n based method. We introduce an enhanced YOLOv11n model incorporating a dynamic receptive field module (RFAConv) and a snake deformation modeling module (DySnakeConv). This approach strengthens shallow feature extraction capabilities and refines adaptive fitting of target boundaries, thereby improving detection accuracy. Experimental results demonstrate that on the RSOD dataset, the improved model achieves mean average precision (mAP) scores of 96.9 % at IoU = 0.50 (mAP50) and 65.5 % over IoU thresholds from 0.50 to 0.95 (mAP5095). These results surpass those of YOLOv8n, YOLOv10n, and other comparative models in key metrics such as precision and recall. Importantly, the model maintains comparable performance on the NWPU VHR-10 dataset. The proposed model presents an efficient solution for detecting small and geometrically sensitive targets in high-resolution remote sensing images.

About the Authors

X. Wu
Belarusian State University
Belarus

Wu Xiangyi – Postgraduate student of the Faculty of Mechanics and Mathematics.

Minsk, 220030 



S. B. Ablameyko
The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Ablameyko Sergey Vladimirovich – Academician, Doctor of Science (Engineering), Professor. Laureate of the State Prize.

 Minsk, 220012



References

1. Li AB, Guo H, Qi C, et al. Dense object detection in remote sensing images under complex background. Computer Engineering and Applications. 2023;59(8):247–253.

2. Yan J, Hu X, Zhang K, Shi T, Zhu G, Zhang Y. Multi-level feature fusion based dim small ground target detection in remote sensing images. Chinese Journal of Scientific Instrument. 2022;4(3):221–229. https://library.imaging.org/jist/articles/67/1/010505

3. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017;39(6),1137–1149. DOI: 10.1109/TPAMI.2016.2577031

4. Jang Y, Gunes H, Patras I. Registration-free Face-SSD: Single shot analysis of smiles, facial attributes, and affect in the wild. Computer Vision and Image Understanding. 2019;182:17–29. DOI: 10.1016/j.cviu.2019.01.006

5. Lin T-Y, Goyal P, Girshick R, He K, Dollár P. Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2020;42(2):318–327. DOI: 10.1109/TPAMI.2018.2858826

6. Redmon J, Divvala S, Girshick R, Farhadi A. (2016). You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA; 2016. Рp. 779-788. DOI: 10.1109/CVPR.2016.91

7. Betti A, Tucci M. YOLO-S: A Lightweight and Accurate YOLO-like Network for Small Target Detection in Aerial Imagery. Sensors. 2023;23(4):1865. DOI: 10.3390/s23041865

8. Wu X, Ablameyko SV. Efficient detection of building in remote sensing images using an improved YOLOv10 network. Informatika [Informatics]. 2025;22(2):33–47. DOI: 10.37661/1816-0301-2025-22-2-33-47

9. Han W, Kuerban A, Yang Y, Huang Z, Liu B, Gao J. (2022). Multi-Vision Network for Accurate and Real-Time Small Object Detection in Optical Remote Sensing Images. IEEE Geoscience and Remote Sensing Letters. 2022;19:1–5. DOI: 10.1109/LGRS.2020.3044422

10. Nie H, Pang H, Ma M, Zheng R. A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8. Sensors (Basel). 2024;24(9):2952. DOI: 10.3390/s24092952

11. Wu Z, Geiger A., Rozner J, Kreiss E, Lu H, Icard T, Potts C, & Goodman ND. Training trajectories of language models across scales. 2023. arXiv preprint arXiv:2304.03198. https://arxiv.org/pdf/2304.03198

12. Mirchandani S, Xia F, Florence P, Ichter B, Driess D, Arenas MG, et al. Large Language Models as General Pattern Machines. Proceedings of the 7th Conference on Robot Learning (CoRL). Atlanta, USA; 2023. pp. 2498-2518. Available at: https://general-pattern-machines.github.io (accessed 02.07.2025). DOI: 10.48550/arXiv.2307.04721

13. Long Y, Gong Y, Xiao Z, Liu Q. Accurate Object Localization in Remote Sensing Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing. 2017;55(5):2486-2498. DOI: 10.1109/TGRS.2016.2645610

14. Cheng G, Han J, Zhou P, Guo L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS Journal of Photogrammetry and Remote Sensing. 2014;98:119–132. DOI: 10.1016/j.isprsjprs.2014.10.002


Review

For citations:


Wu X., Ablameyko S.B. Remote sensing image target detection model integrating dynamic receptive field and snake convolution. «System analysis and applied information science». 2025;(3):4-10. https://doi.org/10.21122/2309-4923-2025-3-4-10

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)