Application of artificial intelligence for predicting injury risk in athletes: an approach using recurrent neural networks
https://doi.org/10.21122/2309-4923-2025-2-11-16
Abstract
The aim of this study is to develop and validate a model for predicting injury risk in athletes using machine learning methods to analyze time-series physiological data. The research focuses on data from runners with the high qualification, including heart rate (HR), heart rate variability (HRV), and training load, allowing for the assessment of an athlete’s physiological state over time and the identification of potential health risks.
The proposed prediction model, based on a Long Short-Term Memory (LSTM) recurrent neural network, enables the identification of periods of increased injury risk in athletes and allows for adjustments to the training process to prevent injuries. Experimental results on real-world data demonstrated a high prediction accuracy of 85%, confirming the effectivenes of the proposed approach in forecasting injury probability. Despite the model’s success, the authors recognize the need for further longitudinal studies with an expanded dataset to ensure a more precise validation of the proposed method.
About the Authors
A. V. SolonetsBelarus
A.V. Solonets, PhD of Pedagogic Sciences, Associate Professor. Head of the Department of Sports Engineering at the Belarusian National Technical University.
Minsk, Republic of Belarus
A. S. Snarsky
Belarus
A.S. Snarsky, PhD in Engineering, Associate Professor. Dean of the Faculty of Industrial and Radiation Safety at the BNTU branch "Interindustry Institute for Advanced Training and Retraining of Personnel in Management and Personnel Development."
Minsk, Republic of Belarus
References
1. Rossi, A. Effective injury forecasting in soccer with GPS training data and machine learning / A. Rossi, L. Pappalardo, P. Cintia, F.M. Iaia, J. Fernàndez, D. Medina // PLoS ONE. – 2018. – Vol. 13, Iss. 7. – P. 1–15. – DOI10.1371/journal.pone.0201264
2. Carey, D.L. Predictive modelling of training loads and injury in Australian football / D.L. Carey, K.L. Ong, R. Whiteley,
3. K.M. Crossley, J. Crow, M.E. Morris // International Journal of Computer Science in Sport. – 2018. – Vol. 17, Iss. 1. – P. 1–18. – DOI: 10.2478/ijcss-2018-0002
4. Eetvelde, H.V. Machine learning methods in sport injury prediction and prevention: a systematic review / H.V. Eetvelde,
5. L.D. Mendonça, C. Ley, R. Seil, T. Tischer // Journal of Experimental Orthopaedics. – 2021. – Vol. 8, Iss. 27. – P. 1–15. – DOI: 10.1186/s40634-021-00346-x
6. Bahr, R. Understanding injury mechanisms: A key component of preventing injuries in sport / R. Bahr, T. Krosshaug // British Journal of Sports Medicine. – 2005. – Vol. 39, Iss. 6. – P. 324–329. – DOI: 10.1136/bjsm.2005.018341
7. Gabbett, T.J. The training-injury prevention paradox: Should athletes be training smarter and harder? / T.J. Gabbett // British Journal of Sports Medicine. – 2016. – Vol. 50, Iss. 5. – P. 273–280. – DOI: 10.1136/bjsports-2015-095788
8. Meeusen, R. Prevention, diagnosis, and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science and the American College of Sports Medicine / R. Meeusen, M. Duclos, C. Foster, A. Fry, M. Gleeson, D. Nieman, J. Raglin, G. Rietjens, J. Steinacker, A. Urhausen // European Journal of Sport Science. – 2013. – Vol. 45, Iss. 1. – P. 186–205. – DOI: 10.1080/17461391.2012.730061
9. Plews, D.J. Heart rate variability in elite triathletes, is variation in variability the key to effective training? A case comparison / D.J. Plews, P.B. Laursen, A.E. Kilding, M. Buchheit // European journal of applied physiology. – 2012. – Vol. 112. – P. 3729–3741. – DOI: 10.1007/s00421-012-2354-4
10. Achten, J. Heart rate monitoring: Applications and limitations / J. Achten, A.E. Jeukendrup // Sports Medicine. – 2003. – Vol. 33. – С. 517–538. – DOI: 10.2165/00007256-200333070-00004
11. Malik, M. Heart rate variability: Standards of measurement, physiological interpretation, and clinical use / M. Malik, J.T. Bigger, A.J. Camm, R.E. Kleiger, A. Malliani, A.J. Moss, P.J. Schwartz // European Heart Journal. – 1996. – Vol. 17, Iss. 3. –
12. P. 354–381. – DOI: 10.1093/oxfordjournals.eurheartj.a014868
13. Kiviniemi, A.M. Endurance training guided by daily heart rate variability measurements / A.M. Kiviniemi, A.J. Hautala, H. Kinnunen, M.P. Tulppo // European Journal of Applied Physiology. – 2007. – Vol. 101. – С. 743–751. – DOI: 10.1007/s00421-007-0552-2
14. Hochreiter, S. Long short-term memory / S. Hochreiter, J. Schmidhuber // Neural Computation. – 1997. – Vol. 9 (8). – P. 1735–1780. – DOI: 10.1162/neco.1997.9.8.1735
15. Hou, J. Application of recurrent neural network in predicting athletes' sports achievement / J. Hou, Z. Tian // The Journal of Supercomputing. – 2022. – Vol. 78. – P. 5507–5525. – DOI: 10.1007/s11227-021-04082-y
16.
Review
For citations:
Solonets A.V., Snarsky A.S. Application of artificial intelligence for predicting injury risk in athletes: an approach using recurrent neural networks. «System analysis and applied information science». 2025;(2):11-16. (In Russ.) https://doi.org/10.21122/2309-4923-2025-2-11-16