Complexification through gradual involvement and reward Providing in deep reinforcement learning
https://doi.org/10.21122/2309-4923-2024-4-13-20
Abstract
About the Author
E. V. Rulko,Belarus
Eugene Rulko, РhD, associate professor in computer science. The head of the research laboratory of military operation simulation
Minsk
References
1. Zhuangdi Zhu et al. Transfer Learning in Deep Reinforcement Learning: A Survey. 2023. arXiv: 2009.07888.
2. Petru Soviany et al. Curriculum Learning: A Survey. 2022. arXiv: 2101.10382.
3. Vassil Atanassov et al. Curriculum-Based Rein-forcement Learning for Quadrupedal Jumping: A Reference-free Design. 2024. arXiv: 2401.16337.
4. Yash J. Patel et al. Curriculum reinforcement learning for quantum architecture search under hardware errors. 2024. arXiv: 2402.03500.
5. David Hoeller et al. ANYmal Parkour: Learning Agile Navigation for Quadrupedal Robots. 2023. arXiv: 2306.14874.
6. Ken Caluwaerts et al. Barkour: Benchmarking Animal-level Agility with Quadruped Robots. 2023. arXiv: 2305.14654.
7. Andrei A. Rusu et al. Progressive Neural Networks. 2022. arXiv: 1606.04671.
8. Enric Boix-Adsera. Towards a theory of model distillation. 2024. arXiv: 2403.09053.
9. Timo Kaufmann et al. A Survey of Reinforcement Learning from Human Feedback. 2024. arXiv: 2312. 14925 [cs.LG]. URL: https://arxiv.org/abs/2312.14925.
10. E. Rulko. Complexification Through Gradual Involvement in Deep Reinforcement Learning. https://github.com/Eugene1533/snake-aipytorch-complexification. 2024.
11. P. Loeber. Reinforcement Learning With PyTorch and Pygame. https : / / github . com / patrickloeber/snake-aipytorch.2021.
Review
For citations:
Rulko, E.V. Complexification through gradual involvement and reward Providing in deep reinforcement learning. «System analysis and applied information science». 2024;(4):13-20. https://doi.org/10.21122/2309-4923-2024-4-13-20