Preview

Модель размещения зарядных станций электромобилей в мегаполисах на основе алгоритма поиска по воробьям

https://doi.org/10.21122/2309-4923-2024-3-12-16

Аннотация

Электромобили обладают такими характеристиками, как низкое энергопотребление и низкий уровень шума, и поэтому широко используются в современном обществе, особенно для перемещения в городах и мегаполисах. Активное применение электромобилей (легковых автомобилей и маршрутных пассажирских транспортных средств рельсовых и безрельсовых) в городах и особенно в мегаполисах снижает вредную нагрузку на экосистему поселения и повышает качество жизни в целом. Перемещения становятся менее экологическиопасными и способствуют сокращению вредных выбросов в атмосферу в местах проживания и активностей городских жителей и туристов. Использование электромобилей требует их интеграции с зарядными станциями, и выбор разумного места для размещения зарядных станций, что может обеспечить поддержку эксплуатации электромобилей в крупнейших и больших городах, а особенно в мегаполисах. Исходя из этого, в данной статье исследуется проблема размещения зарядных станций для городских электромобилей. Во-первых, основные факторы размещения зарядных станций электромобилей анализируются с разных точек зрения, строится многоцелевая модель выбора адреса зарядной станции, предлагается алгоритмическая модель для улучшения алгоритма поиска по воробьям в качестве основы конкретного метода решения, и, наконец, проверяется эффект применения модели и метода решения путём анализа примеров. Из результатов проверки видно, что по сравнению с традиционным генетическим алгоритмом, алгоритмом роя частиц и другими методами выбора адреса, алгоритм, предложенный в данной статье, является более оптимизированным, что способствует улучшению обоснованности выбора адреса зарядной станции электромобиля и может быть распространён в широких масштабах.

Об авторах

Сичжоу Ду
Белорусский национальный технический университет
Беларусь
Ду Сичжоу, аспирант кафедры «Транспортные системы и технологии»


Д. В. Капский
Белорусский национальный технический университет
Беларусь
Капский Денис Васильевич, доктор технических наук, профессор. Процессор кафедры «Транспортные системы и технологии»


Список литературы

1. Xiao Zhiliang, Wang Lijuan, Zheng Yanyu. Research on site selection strategy for new energy vehicle charging stations based on particle swarm optimization algorithm [J]. Transportation Technology and Management, 2024, 05(04): 38-40.

2. Jiang Jinjian, Zhu Weigang. Optimization of electric vehicle charging pile layout based on adaptive particle swarm algorithm [J]. Journal of Anqing Normal University (Natural Science Edition), 2023, 29(04): 47-51.

3. Zeng Xueqi. Research trends on location optimization of electric vehicle charging facilities in transit Comparative study of network-based and meta-network modeling solution methods [J]. Urban Transportation, 2023, 21(05): 125-127.

4. Hao Huimin, Wang Gaili, Zhang Bo. Research on location selection of new energy vehicle charging stations based on accurate center of gravity method taking Urumqi as an example [J]. China Storage and Transportation, 2023, 22(05): 79-80.

5. Liu Liang, Liu Fuhua, Gong Tao, etc. A brief discussion on the location and capacity optimization strategies of charging stations (piles) based on charging needs [J]. Times Automobile, 2022, 30(14): 116-118.

6. Analiz algoritmov obnaruzhenija dorozhno-transportnyh incidentov na skorostnyh avtomagistraljah, ispol'zujushhih stacionarnye detektory transporta / D.B. Navoj, D.V. Kapskij, N.V. Filippova, I.N. Pugachev // Sistemnyj analiz i prikladnaja informatika. – 2023. – № 4. – Р. 37-49. – DOI: 10.21122/2309-4923-2023-4-37-49.

7. Analiz mirovogo opyta v primenenii iskusstvennogo intellekta v sistemah upravlenija dorozhnym dvizheniem razlichnogo urovnja / D. B. Navoj, D. V. Kapskij, N. A. Filippova, I. N. Pugachev // Sistemnyj analiz i prikladnaja informatika. – 2024. – № 1. – Р. 26-36. – DOI 10.21122/2309-4923-2024-1-26-36. – EDN YFVQAE.

8. Yang X.S., Deb S. Engineering optimisation by cuckoo search // Int. J. Math. Modell. Numer. Optim. 2010. V. 1. No. 4. P. 330–343.

9. Mirjalili S., Lewis A. The whale optimization algorithm // Advanc. Engin. Software. 2016. V. 95. P. 51–67.

10. Mirjalili S. SCA: a sine cosine algorithm for solving optimization problems // Knowledge-Based Syst. 2016. V. 96. P. 120–133.

11. Heidari A.A., Mirjalili S., Faris H., et al. Harris hawks optimization: Algorithm and applications // Future Generat. Comput. Syst. 2019. V. 97. P. 849–872.

12. Jain M., Singh V., Rani A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm // Swarm Evoluti. Comput. 2019. V. 44. P. 148–175.

13. Fathollahi-Fard A.M., Hajiaghaei-Keshteli M., Tavakkoli-Moghaddam R. Red deer algorithm (RDA): a new nature-inspired meta-heuristic // Soft Comput. 2020. V. 24. P. 14637–14665.

14. Xue J., Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm // Syst. Sci. Control Engine. 2020. V. 8. No. 1. P. 22–34.

15. Braik M., Sheta A., Al-Hiary H. A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm // Neural Comput. Appli. 2021. V. 33. P. 2515–2547.

16. Abualigah L., Yousri D., Abd Elaziz M., et al. Aquila optimizer: a novel metaheuristic optimization algorithm // Comput. Indust. Engin. 2021. V. 157. P. 107250.

17. Braik M.S. Chameleon Swarm Algorithm: A bio-inspired optimizer for solving engineering design problems // Expert Syst. Appl. 2021. V. 174. P. 114685.

18. Yang Z., Deng L., Wang Y., et al. Aptenodytes forsteri optimization: Algorithm and applications // Knowledge-Based Syst. 2021. V. 232. P. 107483.

19. Xue J., Shen B. Dung beetle optimizer: A new meta-heuristic algorithm for global optimization // J. Supercomput. 2023. V. 79. No. 7. P. 7305–7336.

20. Zhong C., Li G., Meng Z. Beluga whale optimization: A novel nature-inspired metaheuristic algorithm // KnowledgeBased Syst. 2022. V. 251. P. 109215.

21. Wang Z., Liu P., Cui J., Xi Y., Zhang L. Research on quantitative models of electric vehicle charging stations based on principle of energy equivalence // Mathematical Problem In Engineering. – 2013. – № 3. – P. 959–965.

22. Cui S., Zhao H., Wen H., Zhang C. Locating multiple size and multiple type of charging station for battery electricity vehicles // Sustainability. – 2018. – № 10. – P. 32–47.

23. Wolpert D.H., Macready W.G. No free lunch theorems for optimization // IEEE Transactions on Evoluti. Comput. 1997. V. 1. No. 1. P. 67–82.

24. Frade I., Ribeiro A., Goncalves G., Antunes A. Optimal Location of Charging Stations for Electric Vehicles in a Neighborhood in Lisbon, Portugal // Transportation Research Record. – 2011. – № 2. – P. 91–98.

25. Gimenez-Gaydou D. A., Ribeiro A. N., Gutierrea J., Antunes A.P. Optimal location of battery electric vehicle charging stations in urban areas: A new approach // International Journal of Sustainable Transport. – 2016. – № 10. – P. 393–405.

26. Ghamami M., Nie Y., Zockaie A. Planning charging infrastructure for plug-in electric vehicles in city centers // International Journal of Sustainable Transport. – 2016. – № 10. – P. 343–353.

27. He S., Kuo Y.H., Wu D. Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: A case study of Beijing, China // Transportation Research Part C: Emerging Technologies. – 2016. – № 7. – P. 131–148.

28. Mehrjerdi H., Hemmati R. Stochastic model for electric vehicle charging station integrated with wind energy // Sustainable Energy Technologies and Assessments. – 2020. – № 37. – P. 157–177.


Рецензия

Для цитирования:


Ду С., Капский Д.В. Модель размещения зарядных станций электромобилей в мегаполисах на основе алгоритма поиска по воробьям. Системный анализ и прикладная информатика. 2024;(3):12-16. https://doi.org/10.21122/2309-4923-2024-3-12-16

For citation:


Du S., Kapski D.V. A model for placing electric vehicle charging stations in megapolis based on the sparrow search algorithm. «System analysis and applied information science». 2024;(3):12-16. (In Russ.) https://doi.org/10.21122/2309-4923-2024-3-12-16

Просмотров: 155


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)