Классификация методов сегментации снимков земной поверхности


https://doi.org/10.21122/2309-4923-2023-4-20-28

Полный текст:




Аннотация

В данной работе представлена классификация методов сегментации снимков земной поверхности. Рассмотрены такие подходы как сравнение с шаблоном, машинное обучение и глубокие нейронные сети, а также применение знаний об анализируемых объектах. Рассмотрены особенности применения вегетационных индексов для сегментации данных по спутниковым снимкам. Отмечены преимущества и недостатки. Систематизированы результаты, полученные авторами методик, появившихся за последние 10 лет, что позволит заинтересованным быстрее сориентироваться, сформировать идеи для последующих исследований.


Об авторах

Д. B. Куприянова
Белорусский государственный университет информатики и радиоэлектроники
Беларусь

Старший преподаватель, аспирант, кафедра электронных вычислительных машин

г. Минск



Д. Ю. Перцев
Белорусский государственный университет информатики и радиоэлектроники
Беларусь

Кандидат технических наук, доцент, доцент кафедры электронных вычислительных машин

г. Минск

 



М. М. Татур
Белорусский государственный университет информатики и радиоэлектроники
Россия

Доктор технических наук, профессор, профессор кафедры электронных вычислительных машин

г. Минск



Список литературы

1. Copernicus Sentinel Data Access: Annual Report, 2022 [Electronic resource]. Access mode: https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/AnnualReport2022/COPE-SERCO-RP-23-1493_SentinelDataAccessAnnual_Report_2022.pdf. Accessed: 19.11.2023.

2. Cheng G., Han Junwei.Asurvey on object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing. 2016. Vol. 117. Pр. 11-28. doi: 10.1016/j.isprsjprs.2016.03.014

3. Stankov K., He Dong-Chen. Detection of Buildings in Multispectral Very High Spatial Resolution Images Using the Percentage Occupancy Hit-or-Miss Transform. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014. Vol. 7. Issue 10. Pp. 4069-4080. doi: 10.1109/JSTARS.2014.2308301

4. Weber J., Lefèvreb S. Spatial and spectral morphological template matching. Image and Vision Computing. 2012. Vol. 30. Issue 12. Pp. 934-945. doi: 10.1016/j.imavis.2012.07.002

5. Chaudhuri D., Kushwaha N., Samal A. Semi-Automated Road Detection From High Resolution Satellite Images by Directional Morphological Enhancement and Segmentation Techniques. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2012. Vol. 5. Issue 5. Pp. 1538-1544. doi: 10.1109/JSTARS.2012.2199085

6. Lin Y., He H., Yin Z., Chen F. Rotation-invariant object detection in remote sensing images based on radial-gradient angle. IEEE Geoscience and Remote Sensing Letters. 2015. Vol. 12. Issue 4. Pp. 746-750. doi: 10.1109/LGRS.2014.2360887

7. Liu G., Sun X., Fu K., Wang H. Interactive geospatial object extraction in high resolution remote sensing images using shape-based global minimization active contour model. Pattern Recognition Letters. 2013. Vol. 34. Issue 10. Pp. 1186-1195. doi: 10.1016/j.patrec.2013.03.031

8. Tao C., Tan Y., Cai H., Tian J. Airport detection from large IKONOS images using clustered SIFT keypoints and region information. IEEE Geoscience and Remote Sensing Letters. 2011. Vol. 8. Issue 1. Pp. 128-132. doi: 10.1109/LGRS.2010.2051792

9. Leninisha S., Vani K. Water flow based geometric active deformable model for road network. ISPRS Journal of Photogrammetry and Remote Sensing. 2015. Vol. 102. Pp. 140-147. doi: 10.1016/j.isprsjprs.2015.01.013

10. Weidner U., Förstner W. Towards automatic building extraction from high-resolution digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing. 1995. Vol. 50. Issue 4. Pp. 38-49. doi: 10.1016/0924–2716(95)98236–S

11. Ok A.O., Senaras C., Yuksel B. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery. IEEE Transactions on Geoscience and Remote Sensing. 2013. Vol. 51. Issue 3. Pp. 17011717. doi: 10.1109/TGRS.2012.2207123

12. Akçay H.G., Aksoy S. Building detection using directional spatial constraints. IEEE International Geoscience and Remote Sensing Symposium. 2010. Pp. 1932-1935. doi: 10.1109/IGARSS.2010.5652842

13. Rouse J.W. [et al.] Monitoring vegetation systems in the Great Plains with ERTS. Third Earth Resources Technology Satellite–1 Symposium. Vol. 1: Technical Presentations, section A. 1973. NASA. Pp. 309-317.

14. Huete A. [et al.] Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment. 2002. Vol. 83. Issue 1-2. Pp. 195-213. doi: 10.1016/S0034–4257(02)00096–2

15. Riggs G., Hall D., Salomonson V. A Snow Index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectrometer. Proceedings of IGARSS'94 – 1994 IEEE International Geoscience and Remote Sensing Symposium. 1994. Pasadena, CA, USA. Pp. 1942-1944. doi: 10.1109/IGARSS.1994.399618

16. McFeeters S. The Use of Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. International Journal of Remote Sensing. 1996. Vol. 17. Pp. 1425-1432. doi: 10.1080/01431169608948714

17. Gitelson A., Kaufman Y., Merzlyak M. Use of a green channel in remote sensing of global vegetation from EOSMODIS. Remote Sensing of Environment. 1996. Vol. 58. Issue 3. Pp. 289-298. doi: 10.1016/S0034–4257(96)00072–7

18. Penuelas J., Baret F., Filella I. Semi–Empirical Indices to Assess Carotenoids/Chlorophyll-a Ratio from Leaf Spectral Reflectance. Photosynthetica. 1995. Vol. 31. Pp. 221-230.

19. Key C., Benson N. Landscape Assessment: Remote Sensing of Severity, the Normalized Burn Ratio; and Ground Measure of Severity, the Composite Burn Index. FIREMON: Fire Effects Monitoring and Inventory System, RMRS-GTR, Ogden, UT: USDA Forest Service. 2005.

20. Huang S. [et al.] A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research. 2021. Vol. 32. doi: 10.1007/s11676–020–01155–1

21. Miura T. [et al.] An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sensing of Environment. 2001. Vol. 78. Issue 3. Pp. 284-298. doi: 10.1016/S0034–4257(01)00223–1

22. Matsushita B. [et al.] Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress Forest. Sensors. 2007. Vol. 7. Pp. 2636-2651. doi: 10.3390/s7112636

23. Liu L., Shi Z. Airplane detection based on rotation invariant and sparse coding in remote sensing images. Optik. 2014. Vol. 125. Issue 18. Pp. 5327-5333. doi: 10.1016/j.ijleo.2014.06.062

24. Li E. [et al.] Robust Rooftop Extraction From Visible Band Images Using Higher Order CRF. IEEE Transactions on Geoscience and Remote Sensing. 2015. Vol. 53. Issue 8. Pp. 4483-4495. doi: 10.1109/TGRS.2015.2400462

25. Yao X. [et al.] A coarse-to-fine model for airport detection from remote sensing images using target–oriented visual saliency and CRF. Neurocomputing. 2015. Vol. 164. Pp. 162-172. doi: 10.1016/j.neucom.2015.02.073

26. Zhang W. [et al.] A generic discriminative part-based model for geospatial object detection in optical remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing. 2015. Vol. 99. Pp. 30-44. doi: 10.1016/j.isprsjprs.2014.10.007

27. Long J. [et al.] Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2017. Vol. 39. Issue 4. Pp. 640-651. doi: 10.1109/TPAMI.2016.2572683

28. Chen G. [et al.] SDFCNv2: an improved FCN framework for remote sensing images semantic segmentation. Remote Sensing. 2021. Vol. 13. doi: 10.3390/rs13234902

29. Chen L. [et al.] EFCNet: ensemble full convolutional network for semantic segmentation of high–resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters. Vol. 19. doi: 10.1109/LGRS.2021.3076093

30. Foivos I. [et al.] ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing. 2020. Vol. 162. Pp. 94-114. doi: 10.1016/j.isprsjprs.2020.01.013

31. Yue K. [et al.] TreeUNet: adaptive tree convolutional neural networks for subdecimeter aerial image segmentation. ISPRS Journal of Photogrammetry and Remote Sensing. 2019. Vol. 156. Pp. 1-13. doi: 10.1016/j.isprsjprs.2019.07.007

32. Bai H. [et al.] HCANet: a hierarchical context aggregation network for semantic segmentation of high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters. 2021. Vol. 19. doi: 10.1109/LGRS.2021.3063799

33. Weng L. [et al.] Water areas segmentation from remote sensing images using a separable residual segnet network. ISPRS International Journal of Geo-Information. 2020. Vol. 9. doi: 10.3390/ijgi9040256

34. Mi L., Chen Z. Superpixel-enhanced deep neural forest for remote sensing image semantic segmentation. ISPRS Journal of Photogrammetry and Remote Sensing. 2020. Vol. 159. Pp. 140-152. doi: 10.1016/j.isprsjprs.2019.11.006

35. Zhao D. [et al.] Semantic segmentation of remote sensing image based on regional selfattention mechanism. IEEE Geoscience and Remote Sensing Letters. Vol. 19. doi: 10.1109/LGRS.2021.3071624

36. Liu K.-H., Lin B.-Y. MSCSA-Net: Multi-Scale Channel Spatial Attention Network for Semantic Segmentation of Remote Sensing Images. Applied Sciences. 2023. Vol. 13. Issue 17. doi: 10.3390/app13179491

37. Li R., Duan C.X. ABCNet: attentive bilateral contextual network for efficient semantic segmentation of fineresolution remotely sensed imagery. ISPRS Journal of Photogrammetry and Remote Sensing. 2021. Vol. 181. Pp. 84-98. doi: 10.1016/j.isprsjprs.2021.09.005

38. Luo H. [et al.] High-resolution aerial images semantic segmentation using deep fully convolutional network with channel attention mechanism. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2019. Vol. 12. Issue 9. Pp. 3492-3507. doi: 10.1109/JSTARS.2019.2930724

39. Liu Y. [et al.] RoadNet: learning to comprehensively analyze road networks in complex urban scenes from highresolution remotely sensed images. IEEE Transactions on Geoscience and Remote Sensing. 2019. Vol. 57. Issue 4. Pp. 2043-2056. doi: 10.1109/TGRS.2018.2870871

40. Li X. [et al.] Encoding contextual information by interlacing Transformer and convolution for remote sensing imagery semantic segmentation. Remote Sensing. 2022. Vol. 14. doi: 10.3390/rs14164065

41. Zhao X. [et al.] Memory-augmented Transformer for remote sensing image semantic segmentation. Remote Sensing. 2021. Vol. 13. doi: 10.3390/rs13224518

42. Sun S. [et al.] Semantic segmentation for buildings of large intra-class variation in remote sensing images with O-GAN. Remote Sensing. 2021. Vol. 13. doi: 10.3390/rs13030475


Дополнительные файлы

Для цитирования: Куприянова Д.B., Перцев Д.Ю., Татур М.М. Классификация методов сегментации снимков земной поверхности. «Системный анализ и прикладная информатика». 2023;(4):20-28. https://doi.org/10.21122/2309-4923-2023-4-20-28

For citation: Kypriyanava D.V., Pertsau D.Y., Tatur M.M. Classification of earth surface image segmentation methods. «System analysis and applied information science». 2023;(4):20-28. (In Russ.) https://doi.org/10.21122/2309-4923-2023-4-20-28

Просмотров: 132

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)