Preview

«System analysis and applied information science»

Advanced search

Topological optimization of constructive solid geometry of lightweight structures

https://doi.org/10.21122/2309-4923-2022-3-50-55

Abstract

The work is devoted to solving the problem of topological optimization in the design of lightweight structures. The advantages and disadvantages of popular topological optimization methods are analyzed. One of the characteristic problems of all methods is the dependence of their results on grid partitioning. Besides, there is a necessity to recast the geometry model of the structure. To solve this problem, it is proposed to perform the formation of cavities based on the ESO method directly at the constructive solid geometry from the shape elements. The main stages of the proposed approach are described, the use of clustering to simplify the shape of the surfaces of the formed cavities is justified.

About the Authors

I. L. Kovaleva
Belarusian National Technical University
Belarus

Irina L.Kovaleva, PhD, associate Professor of the Department of Software for Information technologies and systems

Minsk



D. P. Kunkevich
Belarusian National Technical University
Belarus

Kunkevich Dmitry, PhD, associate Professor of the Department of Software for Information technologies and systems

Minsk



V. V. Naprasnikov
Belarusian National Technical University
Belarus

Naprasnikov Vladimir Vladimirovich, PhD, associate Professor of the Software Department

Minsk



Y. V. Polozkov
Belarusian National Technical University
Belarus

Polozkov Yury Vladimirovich, PhD, head of the Department of Software for Information technologies and systems

Minsk



A. A. Chvankov
Belarusian National Technical University
Belarus

Chvankov A., engineer of the Department of Software for Information technologies and systems

Minsk



References

1. Polozkov, YU.V. The problems of design and shape creation of lightweight parts in additive manufacturing / YU.V. Polozkov // Matematicheskie metody v tekhnike i tekhnologiyah : sb. tr. mezhdunar. nauch. konf., Minsk, 10 – 12 oktyabrya 017/ SPb.: Izd-vo Politekhn. un-ta ; pod obshch. red. A. A. Bol’shakova. – Minsk, 2017. – T. 10 – S. 61 – 65.

2. Polozkov, YU.V. Unification of formal description of cells and cells structure for topological synthesis in design of lightweight parts / Yu.V. Polozkov, D.P. Kunkevich. // Nauka – obrazovaniyu, proizvodstvu, ekonomike: materialy 16-oj Mezhdunarodnoj nauchno-tekhnicheskoj konferencii (71-j nauchno-tekhnicheskoj konferencii professorsko-prepodavatel’skogo sostava, nauchnyh rabotnikov, doktorantov i aspirantov BNTU), Minsk, 2018 g. / BNTU; redkol.: S. V. Haritonchik [i dr.]. : V 4 t. – Minsk, 2018. – T 1. – S. 229.

3. Polozkov, YU.V. Implementation of algorithm of multiple structure analysis of parts with cell structure by means of PY ANSYS/ Yu.V. Polozkov, V.V. Naprasnikov, I.V. Pavlovskij, E.A. YAkovec. // Matematicheskie metody v tekhnike i tekhnologiyah : sb. tr. mezhdunar. nauch. konf., Minsk, 26 30 oktyabrya 2020 g. / SPb.: Izd-vo Politekhn. un-ta ; pod obshch. red. A. A. Bol’shakova. – Minsk, 2020. – T. 12, CH. 3. – S. 37 – 43.

4. Naprasnikov, V.V. Singularity of applying ANSYS WB optimization algorithms for design of lightweight parts/ V.V. Naprasnikov, Yu.V. Polozkov, D.P. Kunkevich, A.N. Solov’ev. // Matematicheskie metody v tekhnike i tekhnologiyah. – 2021. – № 12. – S. 57 – 61.

5. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization. Comput Struct 1993;49:885–96.

6. Bendsoe MP, Sigmund O. Topology optimization–theory, methods and applications. Springer; 2003.

7. Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 2004;194:363–93.

8. Jikai Liu, Yongsheng Ma. A survey of manufacturing oriented topology optimization methods. Advances in Engineering Softwar, August 2016, pp. 161-175.

9. A new hybrid topology optimization method coupling ESO and SIMP method / H. Jiao, Q. Zhou, S. Fan, Y. Li // Lecture Notes in Electrical Engineering Proceedings of China. Modern Logistics Engineering. – 2014. – P. 373–384.

10. Liu Z., Korvink J., Huang R. Structure topology optimization: fully coupled level set method via FEMLAB // Structural and Multidisciplinary Optimization. – 2005. – June. – Vol. 29, iss. 6. – Р. 407–417.

11. Temis YU.M., YAkushev D.A. Optimization of parts and assemblies of torque converter // Vestnik SGAU. – 2011. – № 3-1. – S. 183–188.

12. Rakovich A.G. Automatization of design of fixtures for metal cutting machines. M.: Mashinostroenie, 1980. 136 s.

13. Kovaleva I.L., Kunkevich D.P., Borodulya A.V., Chvan’kov A.A. Feature based engineering design of lightweight parts// Innovacionnye tekhnologii, avtomatizaciya i mekhatronika v mashinoi priborostroenii: materialy X mezhdunarodnoj nauchno prakticheskoj konf. Minsk: Biznesofset, 2022 – р.49-50.


Review

For citations:


Kovaleva I.L., Kunkevich D.P., Naprasnikov V.V., Polozkov Y.V., Chvankov A.A. Topological optimization of constructive solid geometry of lightweight structures. «System analysis and applied information science». 2022;(3):50-55. (In Russ.) https://doi.org/10.21122/2309-4923-2022-3-50-55

Views: 351


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)