Preview

«System analysis and applied information science»

Advanced search

Image quality assessment

https://doi.org/10.21122/2309-4923-2021-4-4-15

Abstract

Quality assessment is an integral stage in the processing and analysis of digital images in various automated systems. With the increase in the number and variety of devices that allow receiving data in various digital formats, as well as the expansion of human activities in which information technology (IT) is used, the need to assess the quality of the data obtained is growing. As well as the bar grows for the requirements for their quality.
The article describes the factors that deteriorate the quality of digital images, areas of application of image quality assessment functions, a method for normalizing proximity measures, classes of digital images and their possible distortions, image databases available on the Internet for conducting experiments on assessing image quality with visual assessments of experts.

About the Author

Y. I. Golub
United Institute of Informatics Problems, National Academy of Sciences of Belarus
Belarus

Yuliya I. Golub, PhD, Associate Professor, Senior Research Fellow

Minsk



References

1. Serdobincev, E. V. Артефакты и искажения при конусно-лучевой компьютерной томографии [Online]. – Available: https://dentalxray.university/a2. – Date: 07.06.2021.

2. Gonta, А. Резкость изображения и оборудование CCTV / A. Gonta, E. Sedov // Алгоритм безопасности. – 2007. – № 1. – P. 30–32.

3. Gonzalez, R. Digital Image Processing / R. Gonzalez, R. Woods. – 2006. – 1072p.

4. Сборник «Цифровое телевизионное вещание. Везде и всегда. Для всех и для каждого» под редакцией В. В. Бутенко, 2014 [Online]. – Available: https://niir.ru/news/publikacii/2436–2/razdel-11-ocenka-kachestva-izobrazhenij-kontrol-iizmereniya-parametrov-tv-traktov/. – Date: 07.06.2021.

5. DeepMind Technologies Limited [Online]. – Available: https://deepmind.com. – Date: 01.04.2021.

6. Chandler, D. M. Seven challenges in image quality assessment: past, present, and future research // International Scholarly Research Notices. – 2013. – Т. 2013. – P. 1–53.

7. Pertuz, S. Analysis of focus measure operators for shape-from-focus / S. Pertuz, D. Puig, M.A. Garcia // Pattern Recognition. – 2013. – Vol. 46. – № 5. – P. 1415–1432.

8. Zhai, G. Perceptual image quality assessment: a survey / G. Zhai, X. Min // Science China Information Sciences. – 2020. – V. 63. – № 11. – P. 83–135.

9. Zabelin, S.A. Обзор основных видов шумов на спутниковых снимках и методов фильтрации / S.A. Zabelin, A. D. Tulegulov // Reliability & Quality of Complex Systems. – 2013. – № 2. – P. 100–1005.

10. Starovotov, V. V. Method of filter selection for speckle-noise smoothing in sar images / V. V. Starovotov // Informatics. – 2016. – № 2. – P. 5–11.

11. Kokorev P.A. Анализ артефактов изображений в компьютерной томографии // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. – 2008. – № 47.

12. Gu, K. Subjective and objective quality assessment for images with contrast change / K. Gu [et al.] // Proc. IEEE Int. Conf. on Image Processing, Melbourne, VIC, Australia. – 2013. – P. 383–387.

13. Kodak Lossless True Color Image Suite [Online]. – Available: http://r0k.us/graphics/kodak/. – Date: 05.04.2021.

14. Larson, E. C. Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy / E. C. Larson, D. M. Chandler // Journal of Electronic Imaging. – March 2010. – Vol. 19. – № 1. – P. 011006:1–011006:21.

15. Ninassi, A. Pseudo No Reference image quality metric using perceptual data hiding / A. Ninassi, P. L. Callet, F. Autrusseau // in Human Vision and Electronic Imaging. – Vol. 6057 of Proceedings of SPIE. – January 2006. – P. 146–157.

16. Wang Z. [et al.] Image quality assessment: from error visibility to structural similarity //IEEE transactions on image processing. – 2004. – V. 13. – № 4. – P. 600–612.

17. Sheikh, H. R. A statistical evaluation of recent full reference image quality assessment algorithms / H. R. Sheikh, M. F. Sabir, A. C. Bovik // IEEE Transactions on Image Processing. – November, 2006. – Vol. 15. – № 11. – P. 3440–3451.

18. LIVE Image Quality Assessment Database Release 2 [Online]. – Available: http://live.ece.utexas.edu/research/quality. – Date: 05.04.2021.

19. Tourancheau, S., Autrusseau, F., Sazzad, Z.M.P., Horitaa, Y. MICT image quality evaluation database. – 2008.

20. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F. Tampere image database. – 2008.

21. Ponomarenko, N. [et al.] Image database TID2013: Peculiarities, results and perspectives // Signal Processing: Image Communication. – 2015. – V. 30. – P. 57–77.

22. Zaric, A. [et al.] VCL@FER Image Quality Assessment Database // AUTOMATIKA. – 2012. – Vol. 53. – № 4. – P. 344–354.

23. Golub, Y. I. Study of no-reference local image qualityassessments / Y. I. Golub, F. V. Starovoitov, V. V. Starovoitov // Vestnik BrSTU. – 2019. – № 5. – P. 15–18.

24. Beghdadi, A. Contrast enhancement technique based on local detection of edges / A. Beghdadi, A. Le Negrate // Computer Vision, Graphics, and Image Processing. – 1989. – 46(2). – P. 162–174. DOI: 10.1016/0734–189X(89)90166–7

25. Santos, A. [et al.] Evaluation of autofocus functions in molecular cytogenetic analysis // Journal of Microscopy. – 1997. – V.188. – № 3. – P. 264–272.

26. Guan, J. [et al.] No-reference Blur Assessment Based on Edge Modeling // Journal of Visual Communication and Image Representation. – 2015. – V. 29. – P. 1–7.

27. Tian, J. Multi-focus image fusion using a bilateral gradient-base sharpness criterion / J. Tian, L. Chen, L. Ma, W. Yu // Optics communications. – 2011. – 284 (1). – P. 80–87. DOI: doi.org/10.1016/j.optcom.2010.08.085

28. Starovotov, V. V. Comparative analysis of no-reference quality measures for digital images / V. V. Starovotov, F. V. Starovotov // System analysis and applied information science. – 2017. – V. 13. – № 1. – P. 24–31.

29. Larson, E. C. Most Apparent Distortion: Full-Reference Image Quality Assessment and the Role of Strategy / E. C. Larson, D. M. Chandler // Journal of Electronic Imaging. – March 2010. – V. 19. – № 1. – P. 011006:1–011006:21.

30. Von Luxburg, Ulrike. Statistical learning with similarity and dissimilarity functions. Diss. Technische Universität Berlin Berlin, Germany, 2004.

31. Kocić, J. Image quality parameters: A short review and applicability analysis / J. Kocić, I. Popadić, B. Livada // 7th Int. Sci. Conf. Defensive Technol. – 2016.

32. Xu, S. No-reference/blind image quality assessment: a survey / S. Xu, S. Jiang, W. Min // IETE Technical Review. – 2017. – Vol. 34. – № 3. – P. 223–245.

33. Dumic, E. IQM2 – New image quality measure based on steerable pyramid wavelet transform and structural similarity index / E. Dumic, S. Grgic, M. Grgic // Signal, Image and Video Processing. – 2014. – V. 8. – № 6. – P. 1159–1168.

34. Peregudov F. I. Введение в системный анализ / F. I. Peregudov, F. P. Tarasevich. – М.: Высшая школа, 1989. – 367 p.

35. Anfilatov V. S. Системный анализ в управлении / V. S. Anfilatov, А. А. Emel’janov, A.A. Kukushkin – М. Финансы и статистика, 2002. – 368 p.

36. Level of measurement [Online]. – Available: https://en.wikipedia.org/wiki/Level_of_measurement. – Date: 01.06.2021.

37. Starovoitov V. V., Golub Y. I. Data Normalization in Machine Learning. Informatics. 2021 (in print).

38. Kiselev E. V. Прикладная квалиметрия: Конспект лекций / E. V. Kiselev, М. Е. Il’ina. – Рыбинск, 2015. – 52 p.

39. Zhu, W. [et al.] A multiple attributes image quality database for smartphone camera photo quality assessment // 2020 IEEE International Conference on Image Processing (ICIP). – IEEE, 2020. – P. 2990–2994.


Review

For citations:


Golub Y.I. Image quality assessment. «System analysis and applied information science». 2021;(4):4-15. (In Russ.) https://doi.org/10.21122/2309-4923-2021-4-4-15

Views: 666


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)