Preview

Automated CATS system for distance learning

https://doi.org/10.21122/2309-4923-2021-3-67-75

Abstract

This paper discusses a new automated training system called CATS. The proposed system covers all the main components of the educational process, including the simple and convenient formation of educational material, tasks for laboratory works, tests to check knowledge, allows you to monitor the progress of students, the process of studying educational content, check completed work for plagiarism, send incorrectly completed tasks to correction, keep an electronic journal and much more. The automated CATS system has been introduced into the educational process at the Belarusian National Technical University and is actively used, especially in the context of the COVID-19 pandemic. In the spring of 2020 alone, more than a thousand users have registered in the CATS system. The intellectual component in the CATS system allows you to implement a unique training program, which is based on the existing knowledge and the level of perception of the educational material by the students. As mathematical methods, it is proposed to use the analysis of expert systems, as well as artificial neural networks. These mathematical methods made it possible to develop adaptability algorithms, their software implementation and testing in the educational process. Users are provided with a web application and its mobile clients for iOS and Android operating systems. Mobile applications are localized in Russian, Belarusian, English and German. By formalizing the intellectual processes that are carried out by both the teacher and the student, it is possible to automate a certain part of their functions, reduce the cost of manual labor, which will make it easier to control the educational process, and make the training itself more effective.

About the Author

Yu. B. Popova
Belarusian National Technical University
Belarus

Yuliya B. Popova, PhD, Associate Professor of the Department of software for information systems and technologies

Minsk



References

1. Craig Weiss. Top 20 Learning Systems for 2020 [Jelektronnyj resurs]. – Rezhim dostupa: https://docsend.com/view/ qz8irmffcg3s767b – Data dostupa: 21.06.2021.

2. Ellis, Ryann K. Field Guide to Learning Management Systems // ASTD Learning Circuits [Jelektronnyj resurs]. – Rezhim dostupa: https://web.csulb.edu/~arezaei/ETEC551/web/LMS_fieldguide_20091.pdf – Data dostupa: 21.06.2021.

3. Popova, Ju. B. Klassifikacija avtomatizirovannyh sistem upravlenija obucheniem / Ju. B. Popova // Sistemnyj analiz i prikladnaja informatika. – 2016. – № 2. – S. 51–58.

4. Popova, Ju. B. Ot LMS k adaptivnym obuchajushhim sistemam / Ju. B. Popova // Sistemnyj analiz i prikladnaja informatika. – 2019. – № 2. – S. 58–64.

5. Popova, Ju. B. Algoritmicheskaja i programmnaja realizacija opredelenija plagiata v sistemah upravlenija obucheniem / Ju. B. Popova, A. S. Goloburda // Sistemnyj analiz i prikladnaja informatika. – 2017. – № 1. – S. 71–78.

6. Popova, Ju. B. Avtomatizirovannaja sistema upravlenija obucheniem CATS (Care About The Students) / Ju. B. Popova // Nauka i tehnika. – 2019. – № 4 (18). – S. 339–349.

7. Lehchylin, I. Adaptive Mobile Application for the Cats Learning System / I. Lehchylin, Y. Papova // CERes Journal. – 2020. – № 6 (1). – P. 84–96.

8. Brusilovsky, P. Adaptive and Intelligent Web-based Educational Systems / P. Brusilovsky // International Journal of Artificial Intelligence in Education – 2003. – № 13 (2–4). – P. 159–172.

9. Boticario, J. G. Issues in developing adaptive learning management systems for higher education institutions / J. G. Boticario, O. C. Santos // International Workshop on Adaptive Learning and Learning Design [Jelektronnyj resurs]. – Rezhim dostupa: http://www.ia.uned.es/~jgb/publica/ADALE-ocsjgbah06-final.pdf – Data dostupa: 23.06.2021.

10. Brunstein, A., Betts, S., Anderson, J. R. Practice enables successful learning under minimal guidance / A. Brunstein,

11. S. Betts, J. R. Anderson // Journal of Educational Psychology [Jelektronnyj resurs]. – Rezhim dostupa: https://doi.org/10.1037/a0016656 – Data dostupa: 23.06.2021.

12. Barla, M. On the impact of adaptive test question selection for learning efficiency / M. Barla, M. Bieliková, A. B. Ezzeddinne, T. Kramár, M. Šimko, O Vozár // Computers & Education. – 2010. – № 55 (2). – P. 846–857.


Review

For citations:


Popova Yu.B. Automated CATS system for distance learning. «System analysis and applied information science». 2021;(3):67-75. (In Russ.) https://doi.org/10.21122/2309-4923-2021-3-67-75

Views: 576


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)