Evaluation of operator’s state under the influence of electromagnetic noise generator
https://doi.org/10.21122/2309-4923-2020-4-45-53
Abstract
About the Authors
A. V. SidorenkoBelarus
Doctor of science in techniques, professor of physics and aerospace technology department of radiophysics and computer technologies faculty
M. A. Saladukha
Belarus
Master of physics and mathematics, senior teacher of telecommunication and information technology department of radiophysics and computer technologies faculty
References
1. Sidorenko A. V., Solodyuho N.A. Emotion state of operator subjected by electromagnetic noise radiation. Doklady BGUIR. 2019;(4):5–10. (In Russ.)
2. Richman J. S., Moorman J. R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278(6):2039–2049.
3. Sidorenko A. V. Metody informacionnogo analiza biojelektricheskih signalov. Minsk: BGU; 2003. (in Russ.)
4. Harne B. P. Higuchi Fractal Dimension Analysis of EEG Signal before and after OM Chanting to Observe Overall Effect on Brain. IJECE. 2014;4(4):585–592.
5. Petrov L.A., Lewin P. L., Czaszejko T. On the Applicability of Nonlinear Time series Methods for Partial Discharge Analysis. IEEE Transactions on Dielectrics and Electrical Insulation. 2014;21:284–293.
6. Armitage R., Hoffman R. F., Rush A. J. Biological rhythm disturbance in depression: temporal coherence of ultradian sleep EEG rhythms. Psychol Med. 1999;29(6):1435–1448.
7. Bachmann M. Spectral Asymmetry and Higuchi’s Fractal Dimension Measures of Depression Electroencephalogram. Computational and Mathematical Methods in Medicine. 2013;2013:251638–1–251638–8.
8. Bachmann M., Lass J., Hinrikus H. Single channel EEG analysis for detection of depression. Biomedical Signal Processing and Control.2017;31:391–397.
9. Hong Peng, A method of identifying chronic stress by EEG. Personal and Ubiquitous Computing. 2013;17(17):1341– 1347.
10. Perrin S. L. Waking qEEG to assess psychophysiological stress and alertness during simulated on-call conditions. International Journal of Psychophysiology. 2019;141:93–100.
11. Lili Li, EEG-based Mental Fatigue Detection by Spectral Non-negative Matrix Factorization. Conf Proc IEEE Eng Med Biol Soc. 2016;2016: 3716–3719.
12. Fei Wang, EEG-based mental fatigue assessment during driving by using sample entropy and rhythm energy. The 5th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems. 2015;2015:1906–1911.
13. Rui Xu, How Physical Activities Affect Mental Fatigue Based on EEG Energy, Connectivity, and Complexity. Frontiers in Neurology. 2018;9:1–13.
14. Sidorenko A. V., Soloduho N.A. Vozdejstvie shumovogo izluchenija na central’nuju nervnuju sistemu. Jelektronika INFO. 2016;(11):58–62. (In Russ.)
Review
For citations:
Sidorenko A.V., Saladukha M.A. Evaluation of operator’s state under the influence of electromagnetic noise generator. «System analysis and applied information science». 2020;(4):45-53. (In Russ.) https://doi.org/10.21122/2309-4923-2020-4-45-53