Организация хранения и поиска образа лица в объектно-ориентированной базе лиц
https://doi.org/10.21122/2309-4923-2020-2-54-60
Аннотация
Целью работы является разработка алгоритма функционированием системой распознавания лиц с использованием объектно-ориентированных баз данных. Система обеспечивает автоматическую идентификацию искомого объекта или идентифицирует кого-либо по цифровой фотографии или видеокадру из видеоисточника. Технология включает сравнение предварительно сканированных элементов лица из полученного изображения с прообразами лиц, хранимых в базе данных. Современные пакеты объектно-ориентированных баз данных дают пользователю возможность создания нового класса с заданными атрибутами и методами, получения классов, наследующих атрибуты и методы от суперклассов, создавать экземпляры класса, каждый из которых обладает уникальным объектным идентификатором, извлекать эти экземпляры по одному или группами, а также загружать и выполнять эти процедуры. Использование в алгоритме свёрточной нейронной сети позволяет осуществить переход от конкретных особенностей изображения к более абстрактным деталям.
Об авторах
С. Ч. ДонгБеларусь
Донг Суан Чинь – магистрант кафедры проектирования информационно-компьютерных систем
В. С. Ионин
Беларусь
Ионин Виктор Сергеевич – кандидат технических наук, доцент кафедры проектирования информационно-компьютерных систем
Список литературы
1. Анализ существующих подходов к распознаванию лиц. – [Электронный ресурс]. – Код доступа: http://paclub.ru/assets/curriculum/programs. – Дата доступа 14.01.2020.
2. Объектно-ориентированные базы данных – основные концепции, организация и управление: краткий обзор. – [Электронный ресурс]. – Код доступа: http://citforum.ru/database/articles/art_24.shtml. – Дата доступа 14.01.2020.
3. Serge Abiteboul. Towards a Deductive Object-Oriented Database Language // Data and Knowledge Eng. – 5. – 1990. – 263–287.
4. Kyuchul Lee, Sukho Lee. An Object-Oriented Approach to Data/Knowledge Modelling Based on Logic // 6th Int. Conf. Data Eng., Los Angeles, Calif., USA, Febr. 5–9, 1990. – 289–294.
5. A. M. Alashqur, S. Y. W. Su, H. Lam. A Rule-based Language for Deductive Object-Oriented Databases // 6th Int. Conf. Data Eng., Los Angeles, Calif., USA, Febr. 5–9, 1990. – 58–67.
6. Lois M. L. Delcambre, Karen C. Davis. Automatic Validation of Object-Oriented Database Structures // 5th Int. Conf. Data Eng., Los Angeles, Calif., USA, Febr. 6–10, 1989. – 2–9.
7. Introducing Convolutional Neural Networks in Deep Learning. – [Электронный ресурс]. – Код доступа: https:// towardsdatascience.com/introducing-convolutional-neural-networks-in-deep-learning-400f9c3ad5e9. – Дата доступа 18.01.2020.
8. Labeled Faces in the Wild. – [Электронный ресурс]. – Код доступа: http://vis-www.cs.umass.edu/lfw/. – Дата доступа 18.01.2020.
9. A Detailed Guide to 7 Loss Functions for Machine Learning Algorithms with Python Code. – [Электронный ресурс]. – Код доступа: https://www.analyticsvidhya.com/blog/2019/08/detailed-guide-7-loss-functions-machine-learning-python-code/. – Дата доступа 18.01.2020.
10. Definition and Overview of ODBMS. – [Электронный ресурс]. – Код доступа: https://www.geeksforgeeks.org/definition-and-overview-of-odbms. – Дата доступа 18.01.2020.
Рецензия
Для цитирования:
Донг С.Ч., Ионин В.С. Организация хранения и поиска образа лица в объектно-ориентированной базе лиц. Системный анализ и прикладная информатика. 2020;(2):54-60. https://doi.org/10.21122/2309-4923-2020-2-54-60
For citation:
Dong X.C., Ionin V.I. Using object-oriented databases in face recognition. «System analysis and applied information science». 2020;(2):54-60. (In Russ.) https://doi.org/10.21122/2309-4923-2020-2-54-60