Preview

Building a geometric part finite element model of one kind of porous structures

https://doi.org/10.21122/2309-4923-2019-4-55-61

Abstract

When creating porous materials, one of the tasks is to increase the insulating properties of products made from such materials. The properties of the porous material depends on the geometry of the pores and their relative position. Another area of use of porous materials is associated with their use for filtration. Thus, it is necessary to be able to obtain the results of virtual tests of the porous structure for the study of fluid flow in this structure or patterns of the distribution of temperature fields in the material.

In both cases, to perform the simulation, you must first create the geometric part of the finite element model. Note that in the first problem, the geometric region is the material of the pores, and in the second case, the liquid contained in the pores.

About the Authors

V. V. Naprasnikov
Belarusian National Technical University
Belarus
Naprasnikov Vladimir Vladimirovich, PhD, associate Professor of the Software Department


J. V. Polozkov
Belarusian National Technical University
Belarus
PolozkovYury Vladimirovich, PhD, head of the Department of Software for Information technologies and systems


A. V. Borodulya
Belarusian National Technical University
Belarus
Borodulya Aleksei, PhD, associate Professor of the Software for Information technologies and systems Department


D. P. Kunkevich
Belarusian National Technical University
Belarus
Kunkevich Dmitry, PhD, associate Professor of the Software Department


References

1. Polozkov Yu. V. Problemy proektirovanija i formoobrazovanija legkovesnyh detalej v additivnom proizvodstve. Sbornik trudov mezhdunarodnoj nauchnoj konferencii “Matematicheskie metody v tehnike i tehnologijah”, 2017, tom 10, s.61-65.

2. Borodulja A. V., Kunkevich D. P., Naprasnikov V. V., Polozkov Yu. V. APDL-modelirovanie jacheistyh konstruktivnyh jelementov detalej dlja additivnogo formoobrazovanija. Materialy NTK “Additivnye tehnologii, materialy i konstrukcii”, Grodno, 5-6 oktjabrja, 2016, s. 146–152.

3. Poristye pronicaemye materialy: Spravochnik / pod red. S.V. Belova. M.:Metallurgija, 1987, 335 s.

4. ANSYS CFX-Solver Theory Guide.Basic Solver Capability Theory. Governing Equations. Flow in Porous Media. Turbulence and Wall Function Theory. Eddy Viscosity Turbulence Models, 402 s.

5. Lojcjanskij L. G. Mehanika zhidkosti i gaza. 7-e izd., ispr. M.: Drofa, 2003, 840 s.

6. Pejre R., Tejlor T. Vychislitel’nye metody v zadachah mehaniki zhidkosti. L.: Gidrometeoizdat, 1986, 351 s.

7. Fletcher K. Vychislitel’nye metody v dinamike zhidkostej. T. 2. M.:Mir,1991, 552 s.

8. Shabarov V. V. Primenenie sistemy ANSYS k resheniju gidrogazodinamicheskih zadach. Nizhnij Novgorod, 2006, 108 s.


Review

For citations:


Naprasnikov V.V., Polozkov J.V., Borodulya A.V., Kunkevich D.P. Building a geometric part finite element model of one kind of porous structures. «System analysis and applied information science». 2019;(4):55-61. (In Russ.) https://doi.org/10.21122/2309-4923-2019-4-55-61

Views: 625


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)