Preview

SOFTWARE IMPLEMENTATION OF THE ARTIFICIAL NEURAL NETWORK FOR VIRTUAL OBJECTS СONTROL

https://doi.org/10.21122/2309-4923-2017-4-72-78

Abstract

Artificial neural networks (ANN) are now widely used in control and forecasting problems. The purpose of this work is the implementation of an artificial neural network for virtual objects control in a computer game of football. To achieve this goal, it is necessary to solve a number of problems related to mathematical modeling of ANN, algorithmization and software implementation. The paper deals with the mathematical modeling of an artificial neural network by the method of back propagation of an error, the algorithms for calculating neurons and for teaching ANN are presented. The software implementation of the artificial neural network was performed in the JavaScript language using the Node. js library, which assumed the role of a server for managing the game process. Some functions of the Underscore. js library were used to work with data arrays. The training sample consisted of more than 1000 sets of inputs and outputs, reflecting all possible situations. The results of software implementation of an artificial neural network are described on the example of virtual players control for a computer game. The results of the work show that ANN with a sufficiently high speed in real time gives the necessary direction for the player’s movement. The use of an artificial neural network has reduced the use of CPU time, which is extremely important in problems where rapid decision making is required, because complex calculations and prediction algorithms can not always be invested in 20 ms, which is fraught with skipping moves and losses. The simulated artificial neural network and the implemented algorithm of its learning can be used to solve other problems, for which only new data of the surrounding world are needed.

About the Authors

Yu. B. Popova
Belarusian National Technical University
Belarus
Yuliya B. Popova, PhD, Associate Professor of the Software Department


S. V. Yatsynovich
Belarusian National Technical University
Belarus
Siarhei Yatsynovich – postgraduate student


References

1. Hajkin, S. Nejronnye seti: polnyj kurs / S. Hajkin. – Izd. 2-e. – M.: Vil’jams, 2006. – 1104 s.

2. Kriesel, D. A Brief Introduction to Neural Networks [Jelektronnyj resurs] / D. Kriesel. – Rezhim dostupa – http://www.dkriesel.com/en/science/neural_networks. – Data dostupa: 01.10.2017.

3. Zhdanov, A. A. Avtonomnyj iskusstvennyj intellekt [Jelektronnyj resurs] / A. A. Zhdanov. – M.: BINOM. Laboratorija znanij, 2012. – 359 s.

4. Popova, Ju. B. Nejronnye seti v obuchajushhih sistemah / Ju. B. Popova, S. V. Jacynovich // Informacionnye tehnologii v tehnicheskih i social’no-jekonomicheskih sistemah: sb. materialov nauch.-teh. konf. – Minsk: RIVSh, 2016. – S. 9–11.

5. Uossermen, F. Nejrokomp’juternaja tehnika: teorija i praktika / F. Uossermen. – M.: Mir, 1992. – 184 s.

6. Popova, Ju. B. Obuchenie iskusstvennyh nejronnyh setej metodom obratnogo rasprostranenija oshibki [Jelektronnyj resurs] / Ju. B. Popova, S. V. Jacynovich. – Rezhim dostupa: http://www.bntu.by/news/67-conferencemido/4860-2016-11-18-15-47-40.html. – Data dostupa: 01.08.2017.

7. Paradigmy obuchenija nejronnyh setej [Jelektronnyj resurs]. – Rezhim dostupa: http://apsheronsk.bozo.ru/Neural/Lec3.htm. – Data dostupa: 10.05.2017.


Review

For citations:


Popova Yu.B., Yatsynovich S.V. SOFTWARE IMPLEMENTATION OF THE ARTIFICIAL NEURAL NETWORK FOR VIRTUAL OBJECTS СONTROL. «System analysis and applied information science». 2017;(4):72-78. (In Russ.) https://doi.org/10.21122/2309-4923-2017-4-72-78

Views: 924


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2309-4923 (Print)
ISSN 2414-0481 (Online)