SYSTEM ANALYSIS OF MAJOR TRENDS IN DEVELOPMENT OF ADAPTIVE TRAFFIC FLOW MANAGEMENT METHODS
https://doi.org/10.21122/2309-4923-2017-3-28-32
Abstract
Adaptive algorithms, which current traffic systems are based on, exist for many decades. Information technologies have developed significantly over this period and it makes more relevant their application in the field of transport. This paper analyses modern trends in the development of adaptive traffic flow control methods. Reviewed the most perspective directions in the field of intelligent transport systems, such as high-speed wireless communication between vehicles and road infrastructure based on such technologies as DSRC and WAVE, traffic jams prediction having such features as traffic flow information, congestion, velocity of vehicles using machine learning, fuzzy logic rules and genetic algorithms, application of driver assistance systems to increase vehicle’s autonomy. Advantages of such technologies in safety, efficiency and usability of transport are shown. Described multi-agent approach, which uses V2I-communication between vehicles and intersection controller to improve efficiency of control due to more complete traffic flow information and possibility to give orders to separate vehicles. Presented number of algorithms which use such approach to create new generation of adaptive transport systems.
About the Authors
A. N. KlimovichRussian Federation
limovich Andrei graduated
V. N. Shuts
Belarus
Shuts Vasilii – Candidate of Technical Sciences, Associate Professor of the Department of Intellectual Information
References
1. Aavani, P. A review on adaptive traffic controls systems / P. Aavani, K. S. Mithun, S. Sneha // International Journal of Latest Engineering and Management Research. – 2017. – Vol. 2, № 1. – P. 52–57.
2. Stevanovic, A. Adaptive Traffic Control Systems: Domestic and Foreign State of Practice / A. Stevanovic // A Synthesis of Highway Practice. NCHRP Synthesis 403. – 2010. – 114 p.
3. Hiertz, G. R. The IEEE 802.11 Universe / G. R. Hiertz [et al.] // IEEE Communications Magazine. – 2010. – Vol. 48, № 1. – P. 62–70.
4. Dar, K. Wireless communication technologies for ITS applications / K. Dar [et al.] // IEEE Communications Magazine. – 2010. – Vol. 48, № 5. – P. 156–162.
5. Martinez, F. J. Emergency services in future intelligent transportation systems based on vehicular communication networks / F. J. Martinez [et al.] // IEEE Intelligent Transportation Systems Magazine. – 2010. – Vol. 2, № 2. – P. 6–20.
6. Williams, B. M. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results / B. M. Williams, L. A. Hoel // Journal of Transportation Engineering. – 2003. – Vol. 129, № 6. – P. 664–672.
7. Wu, C.-H. Travel-time prediction with support vector regression / C.-H. Wu, J.-M. Ho, D. Lee // IEEE Transactions on Intelligent Transportation Systems. – 2004. – Vol. 5, № 4. – P. 276–281.
8. Chan, K. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and Levenberg– Marquardt algorithm / K. Chan, T. Dillon, J. Singh // IEEE Transactions on Intelligent Transportation Systems. – 2012. – Vol. 13, № 2. – P. 644–654.
9. Dimitriou, L. Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow / L. Dimitriou, T. Tsekeris, A. Stathopoulos // Transportation Research Part C: Emerging Technologies. – 2008. – Vol. 16, № 5. – P. 554–573.
10. Zhang, Y. Short-term traffic flow forecasting using fuzzy logic system methods / Y. Zhang, Z. Ye // Journal of Intelligent Transportation Systems. – 2008. – Vol. 12, № 3. – P. 102–112.
11. Vlahogianni, E. I. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach / E. I. Vlahogianni, M. G. Karlaftis, J. C. Golias // Transportation Research Part C: Emerging Technologies. – 2005. – Vol. 13, № 3. – P. 211–234.
12. Flemisch, F. Towards Highly Automated Driving: Intermediate report on the HAVEit-Joint System / F. Flemisch [et al.] // 3rd European Road Transport Research Arena – 2010. – P. 1–12.
13. Toffetti, A. CityMobil: Human Factors issues regarding highly-automated vehicles on an eLane / A. Toffetti [et al.] // Paper presented at the Transportation Research Board, New York. – 2009. – Vol. 2110. – P. 1–8.
14. Buehler, M. The DARPA Urban Challenge: Autonomous Vehicles in City Traffic / M. Buehler, K. Iagnemma, S. Singh // Springer Tracts in Advanced Robotics. – 2010. – Vol. 56. – P. 441–508.
15. Wees, K. (2005) Product liability for ADAS; legal and human factors perspectives / K. Wees, K. Brookhuis // European Journal of Transport and Infrastructure Research. – 2005. – Vol. 5, № 4. – P. 357–372.
16. Fei, Y. New vehicle sequencing algorithms with vehicular infrastructure integration for an isolated intersection / Y. Fei, M. Dridi, A. El-Moudni // Telecommunication Systems. – 2012. – Vol 50, № 4. – P. 325–337.
17. Войцехович, О. Ю. Стратегия оптимизации движения автомобилей по магистрали города с использованием бинарного дерева решений / О. Ю. Войцехович, В. Н. Шуть // Информационные технологии и системы 2011 (ИТС 2011): материалы международной научной конференции. – Минск: БГУИР, 2011. – C. 187–188.
18. Li, Z. Signal control optimization for automated vehicles at isolated signalized intersections / Z. Li, L. Elefteriadou, S. Ranka // Transportation Research Part C Emerging Technologies. – 2014. – Vol. 49. – P. 1–18.
19. Wuthishuwong, C. Vehicle to infrastructure based safe trajectory planning for Autonomous Intersection Management / C. Wuthishuwong, A. Traechtler // In Proceedings of IEEE International Conference on ITS Telecommunications. – 2013. – P. 175–180.
20. Dresner, K. A Multiagent Approach to Autonomous Intersection Management / K. Dresner, P. Stone // Journal of Artificial Intelligence Research. – 2008. – Vol. 31. – P. 591–656.
21. Климович, А. Н. Современные подходы и алгоритмы управления транспортными потоками / А. Н. Климович, А. С. Рыщук, В. Н. Шуть // Вестник Херсонского национального технического университета. – 2015. – № 3. – С. 252–256.
Review
For citations:
Klimovich A.N., Shuts V.N. SYSTEM ANALYSIS OF MAJOR TRENDS IN DEVELOPMENT OF ADAPTIVE TRAFFIC FLOW MANAGEMENT METHODS. «System analysis and applied information science». 2017;(3):28-32. (In Russ.) https://doi.org/10.21122/2309-4923-2017-3-28-32