GENETIC ALGORITHM IN OPTIMIZATION DESIGN OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR
https://doi.org/10.21122/2309-4923-2017-1-42-48
Abstract
Classical method of designing electric motors help to achieve functional motor, but doesn’t ensure minimal cost in manufacturing and operating. Recently optimization is becoming an important part in modern electric motor design process. The objective of the optimization process is usually to minimize cost, energy loss, mass, or maximize torque and efficiency. Most of the requirements for electrical machine design are in contradiction to each other (reduction in volume or mass, improvement in efficiency etc.). Optimization in design permanent magnet synchronous motor (PMSM) is a multi-objective optimization problem. There are two approaches for solving this problem, one of them is evolution algorithms, which gain a lot of attentions recently. For designing PMSM, evolution algorithms are more attractive approach. Genetic algorithm is one of the most common. This paper presents components and procedures of genetic algorithms, and its implementation on computer. In optimization process, analytical and finite element method are used together for better performance and precision. Result from optimization process is a set of solutions, from which engineer will choose one. This method was used to design a permanent magnet synchronous motor based on an asynchronous motor type АИР112МВ8.
References
1. Miller, T. J. E. Brushless Permanent Magnet and Reluctance motor drive / T. J. E. Miller. – New York; Oxford: Clarendon Press, 1989. 207 p.
2. Брахман, Т. Р. Многокритериальность и выбор альтернативы в технике. – М.: Радио и связь, 1984. – 287 с.
3. Кини, Р. Л., Райфа, X. Принятие решений при многих критериях: предпочтения и замещения: Пер. с англ. / Под ред. И. Ф. Шахнова. – М.: Радио и связь, 1981. – 560 с.
4. Ehrgott, Matthias. Multicriteria Optimization. – 2nd. – Springer-Verlag Berlin Heidelberg, 2005. – 323 p.
5. Multiobjective Optimization of Induction Machines Including Mixed Variables and Noise Minimization / J. Le Besnerais [et al.]// IEEE Transactions on Magnetics. 2008. – Vol. 44, № 6. – 1102–1105 p.
6. Лотов, А. В., Поспелова, И. И. Многокритериальные задачи принятия решений: учеб. пособие / А. В. Лотов, И. И. Поспелова. – М.: МАКС Пресс, 2008. – 197 c.
7. S. B. Andersen, I. F. Santos. Evolution strategies and multi-objective optimization of permanent magnet motor / S. B. Andersen, I.F. Santos // Applied Soft Computing. 2012. – Vol. 12, no. 2. – pp. 778–792.
8. Petrenko, Y. N. Fuzzy logic and genetic algorithm technique for non-liner system of overhead crane / Y. N. Petrenko, S. E. Alavi. Proceedings of the IEEE Region 8 SIBIRCON-2010, Irkutsk Listvyanka, Russia, July 11–15, 2010, pp. 848–851.
9. Шварц, Д. Т. Интерактивные методы решения задачи многокритериальной оптимизации. Обзор / Д. Т. Шварц // Наука и образование / МГТУ им. Н.Э. Баумана. 2013. № 4. – Режим доступа: http://old.technomag.edu.ru/issue/541044.html – Дата доступа: 28.11.2016.
10. Нго, Фыонг Ле, Гульков, Г. И. Эквивалентная схема магнитной цепи синхронного двигателя с инкорпорированными магнитами // М.: Энергетика. 2015. – № 4. – с. 13–14.
11. Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity /Morimoto [et al.] // IEEE Transactions on Industry Applications. 1990. – Vol. 26, № 5. – p. 866–871.
12. Kamiya M. Development of traction drive motors for the Toyota hybrid systems // IEEJ Transactions on Industry Applications. Apr. 2006. – Vol. 126, № 4. – P. 473–479.
Review
For citations:
Ngo P.L. GENETIC ALGORITHM IN OPTIMIZATION DESIGN OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR. «System analysis and applied information science». 2017;(1):42-48. (In Russ.) https://doi.org/10.21122/2309-4923-2017-1-42-48