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Abstract. To address the challenges of a high missed detection rate for small targets and strong interference 
from complex backgrounds in remote sensing image target detection, the paper proposes an improved YOLOv11n 
based method. We introduce an enhanced YOLOv11n model incorporating a dynamic receptive field module (RFA-
Conv) and a snake deformation modeling module (DySnakeConv). This approach strengthens shallow feature 
extraction capabilities and refines adaptive fitting of target boundaries, thereby improving detection accuracy.  
Experimental results demonstrate that on the RSOD dataset, the improved model achieves mean average preci-
sion (mAP) scores of 96.9 % at IoU = 0.50 (mAP50) and 65.5 % over IoU thresholds from 0.50 to 0.95 (mAP50-
95). These results surpass those of YOLOv8n, YOLOv10n, and other comparative models in key metrics such as 
precision and recall. Importantly, the model maintains comparable performance on the NWPU VHR-10 dataset.  
The proposed model presents an efficient solution for detecting small and geometrically sensitive targets in high-res-
olution remote sensing images.
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1. Introduction

The core task of remote sensing image target 
detection lies in precisely locating and identifying 
specific targets within the image. This technology holds 
extensive applications across national defense, military, 
and national economic fields [1]. In remote sensing 
image detection tasks, the significant variations in target 
size and the high complexity of background conditions 
greatly increase the difficulty of detection and recognition. 
Contrasted with traditional natural images, remote 
sensing images feature more intricate backgrounds.  
The target information tends to be fragmented and 
densely distributed, causing the feature map to be filled 
with a vast amount of interference information, which in 
turn further intensifies the challenges of detection.

With the development of deep learning, deep 
learning-based remote sensing image target detection 
methods have achieved remarkable progress [2]. These 
methods effectively address complex scenarios in remote 
sensing imagery, improving both detection accuracy 
and real-time capability. Currently, deep learning-based 
target detection algorithms are primarily categorized into 
two distinct types: single-stage detection frameworks and 
two-stage detection frameworks. The two-stage detection 
paradigm is typified by the R-CNN [3] series, which 
encompasses enhanced variants such as Fast R-CNN and 
Faster R-CNN. In contrast, the single-stage detection 
paradigm is represented by mainstream algorithms 
including SSD [4], RetinaNet [5], and YOLO [6].

Although deep learning-based remote sensing 
target detection algorithms have achieved substantial 
advancements, they persistently confront challenges such 

as inadequate detection accuracy and low computational 
efficiency. To address these challenges, researchers 
have developed diverse optimization strategies. Betti et 
al. [7] introduced a YOLO variant optimized for small 
target detection, employing a compact feature extractor 
and skip connections to reuse features and integrate 
information, thereby enhancing detection performance. 
Wu et al. [8] enhanced the YOLO network by integrating 
an attention mechanism, augmenting feature fusion, and 
incorporating a dedicated small target detection layer, 
which elevated remote sensing image detection accuracy. 
Han et al. [9] employed dilated convolutions to capture 
multi-scale information, utilizing varying dilation rates 
to expand the receptive field. Nie et al. [10] proposed the 
SSFF module and utilized HPANet to replace the Path 
Aggregation Network, resulting in enhanced accuracy 
and reduced network parameters.

In response to the characteristics of remote 
sensing images, including complex backgrounds, 
diverse target shapes, and varied scales, this paper 
proposes an enhanced algorithm termed YOLO-RDC 
(YOLOv11+RepConv+DySnakeConv), which is based 
on YOLOv11, designed to optimize the model structure 
and feature fusion strategy, thereby mitigating issues 
such as small target missed detection and geometric 
target deformation in remote sensing target detection 
tasks.

2. The model structure

Figure 1 illustrates the architecture of the pro-
posed YOLO-RDC network model. First, the Receptive 
Field Attention Conv (RFAConv) module is integrated 



SYSTEM ANALYSIS							                  5

3, 2025					                 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

into the shallow backbone layer (P3/8) to enhance 
small-target features, utilizing multi-scale convolutions 
and attention weighting to amplify texture details  
on 80×80 high-resolution feature maps, thereby 
suppressing complex background interference. 
Subsequently, the C2f_DySnakeConv module is 

applied to the deep head layer (P5/32) for optimizing 
geometrically sensitive target boundaries, where 
deformable convolution kernels adaptively fit contours 
along target centerlines, addressing deformation 
challenges in irregular structures (e.g., runways, bridges, 
roads). 

Figure 1. Improved model network structure diagram

Shallow features exhibit higher resolution 
yet weaker semantics, enabling detailed extraction;  
whereas deep features possess stronger semantics  
but lower resolution, facilitating structural modeling. 
Both feature hierarchies transmit geometric information 
via the Feature Pyramid Network (FPN)'s top-down 
pathway to preserve high-level feature details.

2.1 RFAConv

RFAConv (Receptive-Field Attention Convo-
lution) integrates spatial attention mechanisms with 
convolutional operations to enhance convolutional 
neural networks (CNNs) [11]. By concentrating on 
spatial features within the receptive field, RFAConv 
enables CNNs to interpret local regions more  
effectively, thereby improving feature extraction 
accuracy. Standard spatial attention alone may be 
insufficient to capture critical information in large 
convolution kernels. RFAConv addresses this limitation 
by generating optimized attention weights, allowing  
large kernels to process image information more 
efficiently. The detailed architecture of RFAConv is 
illustrated in Figure 2.

RFAConv employs grouped convolution to 
extract spatial features of the receptive field and 

generate independent sliding windows, then utilizes 
global average pooling and a 1×1 convolutional layer 
to compute attention weights, and finally multiplies 
the features by these weights to produce the output. In 
summary, the RFA operation can be formulated as:

AvgPool aggregates global information within 
each receptive field, while 1×1 group convolution 
processes cross-channel interactions. The Softmax 
operator highlights discriminative features across the 
receptive field. gi×i is group convolution with kernel size 
i × i; k is convolution kernel size; Norm is normalization 
layer; X is input feature map; Arf denotes the attention 
map and Frf the spatial feature of the receptive field.

2.2 DySnakeConv

DySnakeConv (Dynamic Snake Convolution) 
is a dynamic convolution method designed to enhance 
model expressiveness and efficiency through adaptive 
kernel adjustment. This enables convolutional neural 
networks to accurately perceive and focus on slender, 
curved local structures [12]. These structures occupy a 
small pixel proportion in images and exhibit variable 

(1)
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shapes. Standard or traditional deformable convolutions 
struggle to capture these features stably and accurately, 
often resulting in segmentation breaks. Consequently,  
the core concept of DySnakeConv involves incorporating 

a deformable mechanism, allowing convolution 
operations to automatically adapt receptive field size 
and shape based on input image regions. The detailed 
architecture of DySnakeConv is illustrated in Figure 3.

Figure 2. The detailed structure of RFAConv

Figure 3. DySnakeConv structure diagram

In essence, DySnakeConv enables the convolu-
tion kernel's sampling points to initiate from the center 
and progressively shift along a primary direction.  
During each step, the network acquires minute vertical 
offsets and progressively accumulates them. The 
sampling points of the convolution kernel are connected 
into a continuous curved path, and then feature  
extraction is performed.Set the center coordinate  
of the convolution to Ki = (xi ,yi ), Δ is the deformation 
offset, and c represents the horizontal distance from  
the center grid. The calculation of DySnakeConv can be 
expressed as:

Ki±c is the calculation in the x-axis direction, Kj±c 
is the calculation in the y-axis direction, Σ is the accumu-
lated offset, and since the offset Δ is usually a fractional 
value, bilinear interpolation needs to be implemented:
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where K represents the fractional coordinate position  
in formulas (2), K′ enumerates all integer spatial 
positions, and B is the bilinear interpolation kernel. 
Due to the change in two dimensions (x-axis, y-axis), 
DySnakeConv covers a 9×9 range during the deformation 
process. DySnakeConv aims to better adapt to slender 
structures based on dynamic structures, so as to more 
effectively perceive key features. 

3. Experiments and results analysis
3.1 Experimental environment and parameter 

settings

All experiments in this study were completed  
in a unified hardware and software environment to 
ensure the reliability of the experimental results and 
the accuracy of the data. The specific environment 
configuration parameters of the experiment are shown 
in Table 1 below. The parameters not provided in this 
article use the official default parameters of YOLOv11n.

K B K K K
K

� �� � � �
�� , , (3)

Table 1. Experimental configuration table

Environment Parameter

Operating System Windows 11 64-bit Learning Rate 0.01

GPU NVIDIA GeForce RTX 
4060 Iterations 300

Memory 16G Batchsize 16
Python Python 3.9 Workers 0

Framework PyTorch 2.4.0 Image Input Size 640×640
Environment CUDA 12.41 optimizer auto

3.2 Dataset and Evaluation Criteria

RSOD dataset [13] is a professional remote 
sensing image object detection dataset released by 
Wuhan University in 2015, including the following four 
types of targets: Airplane: 446 images in total, including  
4993 aircraft. Playground: 189 images in total, including 
191 playgrounds. Overpass: 176 images in total, 
including 180 overpasses. Oil drum: 165 images in total, 
including 1586 oil drums. NWPU VHR-10 dataset [14]  
is an open source dataset released by Northwestern 

Polytechnical University in 2014. It has 650 images 
containing targets and 150 background images, totaling 
800 images.

3.3 Cross-model comparison experiments

In this experiment, multiple target detection 
algorithms are selected for performance comparison, 
including YOLOv5n, YOLOv6n, YOLOv8n and 
YOLOv10n. The comparison results are shown  
in Table 2:

NWPU VHR-10 RSOD

model P R mAP50 mAP50-95 P R mAP50 mAP50-95
YOLOv5n 88.9 82.5 89.2 53.1 94.8 89.4 94.3 63.2
YOLOv6n 93.2 80.4 89.2 55.7 93.1 89.9 94.4 64.3
YOLOv8n 90 82.6 88.6 54.5 91.6 89.1 94 64.9
YOLOv10n 88.3 77.2 85.8 52.2 90.5 88.4 94.3 64.7
YOLO11n 91.1 81.2 88.1 53.7 95.9 92.1 96.4 64.3

Ours 91.6 81.5 90 54.5 96 92.2 96.9 65.5

Table 2. Comparison of different models on NWPU VHR-10 and RSOD datasets

As shown in Table 2, the YOLO-RDC model 
performs well in the evaluation indicators on both 
datasets. Compared with YOLO11n, YOLO-RDC  
has an mAP50 that is 1.9 % higher and mAP50-95 
that is 0.8 higher on the NWPU VHR-10 dataset, and 
an mAP50 that is 0.5 % higher and mAP50-95 that is 

1.2 % higher on the RSOD dataset, demonstrating its 
recognition accuracy and reliability for multi-category 
targets in complex scenarios.

Table 3 shows the detection results  
of the model on all categories on the RSOD  
dataset.
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Table 3. Comparison of experimental results for all categories (mAP50)

YOLOv5n YOLOv6n YOLOv8n YOLOv10n YOLOv11n Ours

all 94.3 94.4 94 94.3 96.4 96.9
aircraft 94.9 95.8 95.7 94.8 96.4 96.1
oiltank 96.4 96.5 96.7 96.2 95.7 97.5

overpass 86.2 85.7 84.2 86.5 93.9 94.6
playground 99.5 99.5 99.3 99.5 99.5 99.5

As shown in Table 3, this YOLO-RDC performs 
well in various target detection experiments, especially 
in oiltank and overpass. Figure 4 shows the detection 
effect of the algorithm before and after improvement 
on complex scene images in the ROSD dataset. As can 

be seen from the figure, the improved YOLO-RDC 
algorithm effectively improves the detection accuracy of 
curved targets, while also reducing the problem of false 
detection and missed detection of targets in complex 
scenes.

с. YOLO-RDCb. YOLO-RDCa. YOLO-RDC

Figure 4. Comparison of ROSD remote sensing datasets
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In order to further verify the advantages of the 
algorithm in this paper, common attention modules 
such as EfficientNetv2, EMA Attention, RepViTblock, 

SE, Swin Transformer are introduced for comparative 
experiments. The experimental results are shown  
in Table 4.

Model P R mAP50 mAP50-95 parameters GFLOPs

YOLOv11n 95.9 92.1 96.4 64.3 2.46M 6.3
EfficientNetv2 94.3 89.6 93.6 60.3 2M 3
EMA_attention 91.1 91.2 94.9 64.8 2.46M 6.3
RepViTblock 94.8 90.4 95.3 64.2 2.78M 6.3

SE 88 92.5 93.1 63.5 2.46M 6.3
SwinTransformer 93.2 91.9 94.5 63.8 2.78M 16.6

Ours 96 92.2 96.9 65.5 2.8M 6.6

The P, mAP50, and mAP50-95 of the proposed 
method are 96 %, 96.9 %, and 65.5 %, respectively,  
all reaching the highest values in the experiment. 
Although the model size and detection speed are not 
optimal, they are also within an acceptable range.  
This verifies the advantages of the proposed algorithm  
in remote sensing image detection.

4. Conclusion

In this paper, an improved model based on the 
YOLOv11n architecture is proposed to address the 
challenges of low accuracy in detecting small targets 
in remote sensing images and strong background 
interference. The local feature extraction capability 
is enhanced by introducing RFAConv, and the 
target boundary fitting is optimized by fusing the  

C2f_DySnakeConv structure, which significantly 
improves the detection robustness in complex scenes. 
Experimental results on the NWPU VHR-10 and RSOD 
datasets show that the model has achieved significant 
improvements in both accuracy and efficiency. The 
mAP50 of the model reaches 90.0 % and 96.9 % 
respectively, which is significantly improved compared 
with the baseline YOLOv11n, especially in difficult 
categories such as oil tanks and overpasses, which is 
improved by more than 10 %. In terms of efficiency, 
although the number of parameters has increased, it is 
acceptable compared with the increase in computational 
cost and the significant improvement in the average 
accuracy of the model. Future research directions 
will focus on heterogeneous modality fusion and 
edge deployment optimization to further improve the 
performance and applicability of the model.

Table 4. Experimental results comparing the different attention mechanisms
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СЯНЬИ ВУ1, АБЛАМЕЙКО С. В.1,2

МОДЕЛЬ ОБНАРУЖЕНИЯ ОБЪЕКТОВ НА ИЗОБРАЖЕНИЯХ ДИСТАНЦИОННОГО 
ЗОНДИРОВАНИЯ ЗЕМЛИ С ИСПОЛЬЗОВАНИЕМ ДИНАМИЧЕСКОГО РЕЦЕПТИВНОГО ПОЛЯ 

И SNAKE-СВЕРТКИ

1Белорусский государственный университет
2Объединенный институт проблем информатики Национальной академии наук Беларуси

Минск, Республика Беларусь

Аннотация. Для решения задачи обнаружения объектов на изображениях дистанционного 
зондирования Земли (ДЗЗ) в данной работе предлагается усовершенствованный метод на базе YOLOv11n. 
Предложена улучшенная архитектура YOLOv11n, интегрирующая модуль динамического рецептивного поля 
(RFAConv) и модуль адаптивного моделирования деформаций Snake (DySnakeConv). Этот подход улучшает 
процесс выявления низкоуровневых признаков и оптимизирует адаптивное выделение границ объектов, 
повышая точность обнаружения объектов. Эксперименты на наборе данных RSOD показали, что улучшенная 
модель достигает средней точности (mAP) 96.9 % при IoU = 0.50 (mAP50) и 65.5 % в диапазоне IoU 0.50–
0.95 (mAP50-95). Результаты превосходят показатели YOLOv8n, YOLOv10n и других конкурентных моделей 
по ключевым метрикам (точности и полноте). Важно отметить, что модель сохраняет сопоставимую 
эффективность на наборе NWPU VHR-10. Предложенная модель является эффективным решением для 
обнаружения малых объектов и геометрически сложных целей на изображениях ДЗЗ высокого разрешения.

Ключевые слова: изображения дистанционного зондирования Земли, обнаружение объектов, 
YOLOv11, RFAConv, DySnakeConv
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