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Abstract. To address the challenges of a high missed detection rate for small targets and strong interference
from complex backgrounds in remote sensing image target detection, the paper proposes an improved YOLOvIIn
based method. We introduce an enhanced YOLOv1In model incorporating a dynamic receptive field module (RFA-
Conv) and a snake deformation modeling module (DySnakeConv). This approach strengthens shallow feature
extraction capabilities and refines adaptive fitting of target boundaries, thereby improving detection accuracy.
Experimental rvesults demonstrate that on the RSOD dataset, the improved model achieves mean average preci-
sion (mAP) scores of 96.9 % at IoU = 0.50 (mAP50) and 65.5 % over loU thresholds from 0.50 to 0.95 (mAP50-
95). These results surpass those of YOLOv8n, YOLOvI10n, and other comparative models in key metrics such as
precision and recall. Importantly, the model maintains comparable performance on the NWPU VHR-10 dataset.
The proposed model presents an efficient solution for detecting small and geometrically sensitive targets in high-res-

olution remote sensing images.
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1. Introduction

The core task of remote sensing image target
detection lies in precisely locating and identifying
specific targets within the image. This technology holds
extensive applications across national defense, military,
and national economic fields[1]. In remote sensing
image detection tasks, the significant variations in target
size and the high complexity of background conditions
greatly increase the difficulty of detection and recognition.
Contrasted with traditional natural images, remote
sensing images feature more intricate backgrounds.
The target information tends to be fragmented and
densely distributed, causing the feature map to be filled
with a vast amount of interference information, which in
turn further intensifies the challenges of detection.

With the development of deep learning, deep
learning-based remote sensing image target detection
methods have achieved remarkable progress [2]. These
methods effectively address complex scenarios in remote
sensing imagery, improving both detection accuracy
and real-time capability. Currently, deep learning-based
target detection algorithms are primarily categorized into
two distinct types: single-stage detection frameworks and
two-stage detection frameworks. The two-stage detection
paradigm is typified by the R-CNN [3] series, which
encompasses enhanced variants such as Fast R-CNN and
Faster R-CNN. In contrast, the single-stage detection
paradigm is represented by mainstream algorithms
including SSD [4], RetinaNet [5], and YOLO [6].

Although deep learning-based remote sensing
target detection algorithms have achieved substantial
advancements, they persistently confront challenges such

as inadequate detection accuracy and low computational
efficiency. To address these challenges, researchers
have developed diverse optimization strategies. Betti et
al. [7] introduced a YOLO variant optimized for small
target detection, employing a compact feature extractor
and skip connections to reuse features and integrate
information, thereby enhancing detection performance.
Wau et al. [8] enhanced the YOLO network by integrating
an attention mechanism, augmenting feature fusion, and
incorporating a dedicated small target detection layer,
which elevated remote sensing image detection accuracy.
Han et al. [9] employed dilated convolutions to capture
multi-scale information, utilizing varying dilation rates
to expand the receptive field. Nie et al. [10] proposed the
SSFF module and utilized HPANet to replace the Path
Aggregation Network, resulting in enhanced accuracy
and reduced network parameters.

In response to the characteristics of remote
sensing 1images, including complex backgrounds,
diverse target shapes, and varied scales, this paper
proposes an enhanced algorithm termed YOLO-RDC
(YOLOv11+RepConv+DySnakeConv), which is based
on YOLOv11, designed to optimize the model structure
and feature fusion strategy, thereby mitigating issues
such as small target missed detection and geometric
target deformation in remote sensing target detection
tasks.

2. The model structure

Figure 1 illustrates the architecture of the pro-
posed YOLO-RDC network model. First, the Receptive
Field Attention Conv (RFAConv) module is integrated
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into the shallow backbone layer (P3/8) to enhance
small-target features, utilizing multi-scale convolutions
and attention weighting to amplify texture details

on 80x%80 high-resolution feature maps, thereby
suppressing  complex  background interference.
Subsequently, the C2f DySnakeConv module is

applied to the deep head layer (P5/32) for optimizing
geometrically sensitive target boundaries, where
deformable convolution kernels adaptively fit contours
along target centerlines, addressing deformation
challenges in irregular structures (e.g., runways, bridges,
roads).
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Figure 1. Improved model network structure diagram

Shallow features exhibit higher resolution
yet weaker semantics, enabling detailed extraction;
whereas deep features possess stronger semantics
but lower resolution, facilitating structural modeling.
Both feature hierarchies transmit geometric information
via the Feature Pyramid Network (FPN)'s top-down
pathway to preserve high-level feature details.

2.1 RFAConv

RFAConv (Receptive-Field Attention Convo-
lution) integrates spatial attention mechanisms with
convolutional operations to enhance convolutional
neural networks (CNNs)[11]. By concentrating on
spatial features within the receptive field, RFAConv
enables CNNs to interpret local regions more
effectively, thereby improving feature extraction
accuracy. Standard spatial attention alone may be
insufficient to capture critical information in large
convolution kernels. RFAConv addresses this limitation
by generating optimized attention weights, allowing
large kernels to process image information more
efficiently. The detailed architecture of RFAConv is
illustrated in Figure 2.

RFAConv employs grouped convolution to
extract spatial features of the receptive field and

generate independent sliding windows, then utilizes
global average pooling and a 1x1 convolutional layer
to compute attention weights, and finally multiplies
the features by these weights to produce the output. In
summary, the RFA operation can be formulated as:

F = Softmax (g1X1(Ang001(X))) X ReLU (Norm (gka(X)))

= Ay X Fyf

(1)

AvgPool aggregates global information within
each receptive field, while 1x1 group convolution
processes cross-channel interactions. The Softmax
operator highlights discriminative features across the
receptive field. g*iis group convolution with kernel size
i X i; k is convolution kernel size; Norm is normalization
layer; X is input feature map; A , denotes the attention
map and F  the spatial feature of the receptive field.

2.2 DySnakeConv

DySnakeConv (Dynamic Snake Convolution)
is a dynamic convolution method designed to enhance
model expressiveness and efficiency through adaptive
kernel adjustment. This enables convolutional neural
networks to accurately perceive and focus on slender,
curved local structures [12]. These structures occupy a
small pixel proportion in images and exhibit variable
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shapes. Standard or traditional deformable convolutions
struggle to capture these features stably and accurately,
often resulting in segmentation breaks. Consequently,
the core concept of DySnakeConv involves incorporating
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a deformable mechanism, allowing convolution
operations to automatically adapt receptive field size
and shape based on input image regions. The detailed
architecture of DySnakeConv is illustrated in Figure 3.
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Figure 3. DySnakeConv structure diagram

In essence, DySnakeConv enables the convolu-
tion kernel's sampling points to initiate from the center
and progressively shift along a primary direction.
During each step, the network acquires minute vertical
offsets and progressively accumulates them. The
sampling points of the convolution kernel are connected
into a continuous curved path, and then feature
extraction is performed.Set the center coordinate
of the convolution to K, = (x,,y,), A is the deformation
offset, and c represents the horizontal distance from
the center grid. The calculation of DySnakeConv can be
expressed as:

c - (Xeo¥ed) = (% ey, + X0 y)
“oord=(s-ev-X)|

K - (5o¥,e) =(x+ 21 vy, +e) 2)
) (xj,c,yH)=(xj—zi{»y,yj_c)'

K., is the calculation in the x-axis direction, K,
is the calculation in the y-axis direction, X is the accumu-
lated offset, and since the offset A is usually a fractional

value, bilinear interpolation needs to be implemented:
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where K represents the fractional coordinate position
in formulas (2), K' enumerates all integer spatial
positions, and B is the bilinear interpolation kernel.
Due to the change in two dimensions (x-axis, y-axis),
DySnakeConv covers a 9x9 range during the deformation
process. DySnakeConv aims to better adapt to slender
structures based on dynamic structures, so as to more
effectively perceive key features.

3. Experiments and results analysis
3.1 Experimental environment and parameter
settings

All experiments in this study were completed
in a unified hardware and software environment to
ensure the reliability of the experimental results and
the accuracy of the data. The specific environment
configuration parameters of the experiment are shown
in Table 1 below. The parameters not provided in this
article use the official default parameters of YOLOv1 In.

Table 1. Experimental configuration table

Environment Parameter
Operating System Windows 11 64-bit Learning Rate 0.01
GPU NVIDIA ;}()661: Oorce RTX Iterations 300
Memory 16G Batchsize 16
Python Python 3.9 Workers 0
Framework PyTorch 2.4.0 Image Input Size 640x%640
Environment CUDA 12.41 optimizer auto

3.2 Dataset and Evaluation Criteria

RSOD dataset [13] is a professional remote
sensing image object detection dataset released by
Wuhan University in 2015, including the following four
types of targets: Airplane: 446 images in total, including
4993 aircraft. Playground: 189 images in total, including
191 playgrounds. Overpass: 176 images in total,

Polytechnical University in 2014. It has 650 images
containing targets and 150 background images, totaling
800 images.

3.3 Cross-model comparison experiments

In this experiment, multiple target detection
algorithms are selected for performance comparison,

including 180 overpasses. Oil drum: 165 images in total, including YOLOv5n, YOLOv6n, YOLOv8n and
including 1586 oil drums. NWPU VHR-10 dataset [14] YOLOv10n. The comparison results are shown
is an open source dataset released by Northwestern in Table 2:
Table 2. Comparison of different models on NWPU VHR-10 and RSOD datasets
NWPU VHR-10 RSOD
model P R mAPS50 mAP50-95 P R mAP50 mAP50-95
YOLOv5n 88.9 82.5 89.2 53.1 94.8 89.4 94.3 63.2
YOLOv6n 93.2 80.4 89.2 55.7 93.1 89.9 94.4 64.3
YOLOvV8n 90 82.6 88.6 54.5 91.6 89.1 94 64.9
YOLOv10n 88.3 77.2 85.8 52.2 90.5 88.4 94.3 64.7
YOLOI11n 91.1 81.2 88.1 53.7 95.9 92.1 96.4 64.3
Ours 91.6 81.5 90 54.5 96 922 96.9 65.5

As shown in Table 2, the YOLO-RDC model
performs well in the evaluation indicators on both
datasets. Compared with YOLOIlln, YOLO-RDC
has an mAP50 that is 1.9 % higher and mAP50-95
that is 0.8 higher on the NWPU VHR-10 dataset, and
an mAPS50 that is 0.5 % higher and mAP50-95 that is

1.2 % higher on the RSOD dataset, demonstrating its
recognition accuracy and reliability for multi-category
targets in complex scenarios.

Table 3 shows  the  detection
of the model on all categories on the
dataset.

results
RSOD
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Table 3. Comparison of experimental results for all categories (mAP50)

YOLOvV5n YOLOv6n YOLOvVS8n YOLOv10n YOLOvlln Ours

all 94.3 94.4 94 94.3 96.4 96.9
aircraft 94.9 95.8 95.7 94.8 96.4 96.1
oiltank 96.4 96.5 96.7 96.2 95.7 97.5
overpass 86.2 85.7 84.2 86.5 93.9 94.6
playground 99.5 99.5 99.3 99.5 99.5 99.5

As shown in Table 3, this YOLO-RDC performs be seen from the figure, the improved YOLO-RDC
well in various target detection experiments, especially — algorithm effectively improves the detection accuracy of
in oiltank and overpass. Figure 4 shows the detection curved targets, while also reducing the problem of false
effect of the algorithm before and after improvement detection and missed detection of targets in complex
on complex scene images in the ROSD dataset. As can  scenes.

[F i B2 —~ B —mmee
Pe —E B =

b. YOLO-RDC c¢. YOLO-RDC

Figure 4. Comparison of ROSD remote sensing datasets
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In order to further verify the advantages of the
algorithm in this paper, common attention modules
such as EfficientNetv2, EMA Attention, RepViTblock,

SE, Swin Transformer are introduced for comparative
experiments. The experimental results are shown
in Table 4.

Table 4. Experimental results comparing the different attention mechanisms

Model P R mAP50 mAP50-95 parameters GFLOPs
YOLOvlIn 95.9 92.1 96.4 64.3 2.46M 6.3
EfficientNetv2 94.3 89.6 93.6 60.3 2M 3
EMA_attention 91.1 91.2 94.9 64.8 2.46M 6.3
RepViTblock 94.8 90.4 95.3 64.2 2.78M 6.3
SE 88 92.5 93.1 63.5 2.46M 6.3
SwinTransformer 93.2 91.9 94.5 63.8 2.78M 16.6
Ours 96 92.2 96.9 65.5 2.8M 6.6
The P, mAP50, and mAP50-95 of the proposed C2f DySnakeConv  structure, which significantly

method are 96 %, 96.9 %, and 65.5 %, respectively,
all reaching the highest values in the experiment.
Although the model size and detection speed are not
optimal, they are also within an acceptable range.
This verifies the advantages of the proposed algorithm
in remote sensing image detection.

4. Conclusion

In this paper, an improved model based on the
YOLOvlln architecture is proposed to address the
challenges of low accuracy in detecting small targets
in remote sensing images and strong background
interference. The local feature extraction capability
is enhanced by introducing RFAConv, and the
target boundary fitting is optimized by fusing the

improves the detection robustness in complex scenes.
Experimental results on the NWPU VHR-10 and RSOD
datasets show that the model has achieved significant
improvements in both accuracy and efficiency. The
mAPS0 of the model reaches 90.0 % and 96.9 %
respectively, which is significantly improved compared
with the baseline YOLOvIIn, especially in difficult
categories such as oil tanks and overpasses, which is
improved by more than 10 %. In terms of efficiency,
although the number of parameters has increased, it is
acceptable compared with the increase in computational
cost and the significant improvement in the average
accuracy of the model. Future research directions
will focus on heterogencous modality fusion and
edge deployment optimization to further improve the
performance and applicability of the model.
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CAHbHU BY', ABJIAMEHKO C. B.*?

MOJEJIb OBHAPYKEHUSA OFBEKTOB HA N30BPA’KEHUAX JTUCTAHIHIMOHHOI'O
3OHANPOBAHUA 3EMJIN C UCITOJIB3OBAHUEM IMHAMUWYECKOI'O PEHEIITUBHOI'O I1OJISA
N SNAKE-CBEPTKH

!Benopycckuil 20cyoapcmeennviil ynugepcumen
2O6vedunennviti uncmumym npoorem ungopmamuxu Hayuonanenou akademuu nayk berapycu
Mumnck, Pecnybnuxa Benapyco

Annomayusn. s pewenus 3a0auu  06Hapydcenusi 00beKmMo8 HA U00PAANCEHUSIX  OUCTAHYUOHHO20
30H0uposanus 3emau ([33) 6 Oannoli pabome npeonaeaemcs yco8epuieHCmao8anubiil memoo Ha 6aze YOLOvIIn.
IIpeonooicena ynyuwennas apxumexmypa YOLOvIIn, unmezpupyiowas mooyib OUHAMUYECKO20 PEYENnMUBHO20 NOJIs
(RFAConv) u modyns adanmusrnozo modenuposanus depopmayuii Snake (DySnakeConv). Dmom nooxoo ymyuuwaem
npoyecc BulAGIeHUs HUZKOYPOBHEBGLIX NPUSHAKOE U ONMUMU3UPYEN a0anmueHoe 6bloeilenue 2panul 0ObeKmos,
ROBbLULASL MOYHOCHb OOHAPYIICeHUs 00beKkmMO08. DKcnepumenmol Ha Habope dannvix RSOD nokazanu, umo yiyyuenHast
MmoOdenv docmueaem cpeoweti mounocmu (mAP) 96.9 % npu loU = 0.50 (mAP50) u 65.5 % 6 ouanazone loU 0.50-
0.95 (mAP50-95). Pezynomamoi npesocxooam noxkaszamenu YOLOvSn, YOLOv10n u Opyeux KouKypeHmHuvIx mooeneti
NO KII0OYe8blM Mempukam (MouyHocmu u notHome). Bascno ommemums, umo modenv coxpamsem conocmagumyro
agppexmusnocme na nHabope NWPU VHR-10. [Ipeonooicennas modens sgnsemcs 3¢ekmusHoim peuteruem OJist
0OHAPYICENUS MATLIX 00BEKINOB8 U 2eOMEMPUYECKU CLOJCHBIX Yelell Ha usodpasicenusnx [33 6vicokozo paspeuienus.

Knrouesvie cnosa: uzobpadicenusi OUCMAHYUOHHO20 30HOUPOSAHUst 3emiu, oOHapysiceHue 00beKmos,
YOLOv11, RFAConv, DySnakeConv
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