CHUCTEMHBIN AHAJIN3

RULKOE.V.

YDC 004.85
DOI: 10.21122/2309-4923-2025-2-4-10

APPLYING ATTENTION U-Net WITH PyTorch ARCHITECTURAL ADD-ONS
FOR EXTENSIVE HYPERPARAMETER SEARCH WITH Weights & Biases
FOR AREA OF VISIBILITY PREDICTION BASED ON TERRAIN

Military Academy of the Republic of Belarus
Minsk, Republic of Belarus

Abstract. Current level of development in the sphere of deep learning allows replacing existing
domain-specific algorithms for military simulation with approximating neural networks. Hyperparameter search
allows finding network’s architecture, appropriate for a task. This work describes that process for the task of pre-
dicting area of optical visibility, taking a fragment of a digital map as input and proposes ancillary architectural
solutions for stitching building blocks together, assuring their conformation for performing search among their pos-
sible combinations within the architectural space. The final proposed result is a channel-wise attention U-Net with

an encoder, based on ResNet50 backbone.

Keywords: : deep learning, U-Net, attention, segmentation, hyperparameter search, W&B, template method

Introduction

Calculation of an area of potential visibility, based
on current terrain and the position of an observer, plays
an important role in military simulation. For air defense
simulators [1] it’s essential to get radar coverage —
Figure 1.

Figure 1. Radar coverage based on terrain

In ground forces simulators [2] every unit
must be provided with an area of optical visibility —
Figure 2. Building such areas in both cases require moving
along azimuth direction with certain discretization and
calculating angles of elevation. At the same time current
development of deep learning allows tackling such tasks,
including calculation of some military domain-specific
areas on a map, like artillery shooting range area, area
of sustainable communication with the influence of
electronic warfare equipment, range of effective fire for
specific arms depending on conditions and so on.

Figure 2. Areas of optical visibility

Transferring military simulation fully into the
realm of deep learning, where neural networks are trained
on “hardcoded” solutions, will allow building End-to-
End systems for military operation planning and utilizing
power of generative artificial intelligence for that.

Proposed approach

The area of optical visibility is calculated based on
matrixes of height and surfaces for a correspondent patch
of area. Usage of the existing military simulation system
[2] provides limitless amount of training data. U-Net
architecture [3] is widely used for the purpose of producing
a mask within the boundaries of the original image,

CUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

2,2025

SYSTEM ANALYSIS

5

for task like semantic segmentation. In our case it takes
three channels: ideal area, height and surface matrices
(U-Net is modified in order to take three input channels)
and must produce an area of optical visibility within

circumscribed area around a hypothetical observer,
situated at the center point. Then the output can be
compared with the ground truth area of visibility given
from a simulator — Figure 3.

=» conv 1x1

Height matrix 64 64
U-Net 128 64 64 2 Output mask
input
. output
'matge > segmentation ‘
ile map
Surface matrix
' 128 128
Ground-truth
g from a simulator
256 256
+ .‘I.‘I =»conv 3x3, ReLU
Ideal area o o copy and crop
' 512 51 1024
°I"."- g ¥ max pool 2x2
g 3§ jom 4 up-conv 2x2
- I -

Figure 3. Area of visibility prediction as a mask

However, the usage of U-Net per se, hasn’t
proved to work well for this. During the research,

SRR
E [E[,|Z
515 Q Q
HEBFEERE
=]) [E] B
> > I--.I
cREN IR @ S
SSREYRESNES A
b b Vx|
T =
x x |><:
SO L

F3 XH4XW4XD4
F4 XH4XW4XD4

several approaches were considered, including attention
U-Net [4] — Figure 4.

1
1
’

. — o
QIQl /S
@ P XX x| =
(Bl ! -~ £
£o5 Xl ox x g
[Fs Q= = —
QA Q] rmim| (= E
@ T X ' X X X g
SispE il ()4
Dox x| ‘=77
o on e e o
SBEREERE:
o LA R i (Conv 3x3x3 + ReLU) (x2)
E % VR R Upsampling (by 2)
E? :’:” Ma.x-pooling (-by 2)
< x Skip Connection
9 Lr:q Gating Signal (Query)

' Concatenation
_/") Attention Gate

Figure 4. Attention U-Net model [4]

The key idea behind this model is usage of
attention gates which learn to suppress irrelevant regions
in an input image while highlighting salient features
useful for a specific task.

Usage of Weights & Biases (W&B) developer
platform [5] has proved to be effective for search of
optimal hyperparameters such as: learning rate, batch
size, dropout values and others. However, search must

also be conducted in the architectural space, because of
a plethora of possible solutions for particular parts of
attention U-Net, like usage of spatial, channel-wise or
combined attention; usage of a model that is trained from
scratch, like in [6] or usage of a pretrained backbone as
an encoder; way of upsampling, like a 2D transposed
convolution or a bilinear method; numbers of internal
parameters in different attentions blocks and others.

2,2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

6

CUCTEMHBIN AHAJIV3

Within W&B sweeps a tested model often must be
rebuilt with different architectural parts, instead of just
picking a model from list of preconfigured, because of
the exorbitant amount of possible combinations. Chosen
parts must match each other, like in a case when a

number of output channels of a convolutional layer is a
tuned hyperparameter, and a consequent fully connected
layer must conform that. The following architecture is
proposed for assuring compatibility of separate building
blocks — Figure 5.

2 nn.Module (PyTorch)
= Attributes
=/ Operations
A
& Block
= Attributes
=/ Operations

+ block_forward(seff)

+ forward(self, **kwargs)

+ hook_after_forward(self)
+ hook_before_forward (self)
+ set_shapes_forward|self)

+ set_shapes_kwargs(self, **kwargs)

+_accept_shapes_forward(self **kwargs)

+__call__(self, **kwargs)

7

~
~/" Conv_batchnorm_relu_block

2] Bridge_in_the_middle_block

Spacial_attention_block

Upscaling_conv_block

=l Attributes

=/ Operations
+ block_forward(self)
+ set_shapes_forward(self)
+ _accept_shapes_forward(self, *...
+ __call__(self, **kwargs)

= Attributes
= Operations
+ block_forward(self)
+ set_shapes_forward(self)
+ _accept_shapes_forward(self, *...
+ _ call__(self, **kwargs)

A
S

Channel_wise_attention_block

=I Attributes
=l Operations
+ block_forward(self)
+ set_shapes_forward(self)

+ _accept_shapes_forward(self, **kwargs)
+ __call__(self, **kwargs)

=l Aftributes
=/ Operations
+ block_forward(self)
+ set_shapes_forward(self)
+ _accept_shapes_forward(self, *...
+ _ call__(self, **kwargs)

= Attributes
= Operations
+ block_forward(self)
+ set_shapes_forward(self)
+ _accept_shapes_forward(self, *...
+ _ call__(self, **kwargs)

>

PSI_for_channel_wise_attention_block

=l Aftributes

=/ Operations
+ block_forward(self)
+ set_shapes_forward(self)
+ _accept_shapes_forward(self, **kwargs)
+ __call__(self, **kwargs)

Figure 5. Hierarchy of blocks

An abstract class Block is inherited from
PyTorch nn.Module and presents a set of abstract
methods to be redefined in subclasses. A forward
method represents a Template method pattern [7] which
defines a set of consecutive steps (hook before forward,
block forward and hook after forward) implemented
in subclasses. In the current model architecture some
blocks contain others, representing a nested structure,
like Upscaling conv_block may contain Channel wise
attention_block which contains PSI for channel wise
attention_block. The parameters of nested blocks are
set by a higher level block during the first call of block
Jforward through calling set shapes forward method on
nested blocks. Each nested block may have a different
signature of parameters to configure, so it in turn calls
a not abstract method set shapes kwargs defined in a
Block class which checks the matching of number and
shapes of passing arguments (just *4wargs) and calls a

method accept shapes forward, which is implemented
by a nested block and has a specific set of parameters
in a signature (not just *kwargs) — Figure 6. Such a
gimmick allows having self-descriptive signatures like
accept_shapes_forward (self, _gate plus x _num_ch:
int, x _channels number: int) in PSI for channel wise
attention_block class, instead of just passing a dictionary
of keywords and parsing them uniquely, depending on
a building block. It increases code readability and also
allows checking and handling possible mismatch without
generating an exception.

Abstract element_bulider class provides a set of
methods for getting building blocks, based on current
values from W&B during sweeps for hyperparameter
search — Figure 7. Two concrete implementations of it
(WandB_elementbuilder and Solitary elementBuilder)
allow switching between the modes of performing W&B
sweeps and manual experiments.

CHUCTEMHBINA AHAJIN3 U TIPAKJIATHASI THOOPMATHKA

2,2025

SYSTEM ANALYSIS

PyTorch framework Block @ Upscaling_conv_blocﬁ] Channel_wise_attention_bloCIE

forward

.

block_forward

[

|

|

|

|

|

L

|

|

| >

| set_shapes_forward
| >
|

| set_shapes_kwargs

| 4

|

|

| If shapes are not yet initialized

|

| accept_shapes_forward

| >
|

|

|

| G e
|

|

|

: - ---------- - - - — - m e m - - - =
| SR T
|

| < [

|

]<_ __________ .

Figure 6. Steps of shape initialization during the forward method call

Abstract_train_mode class provides a set of
abstract methods for getting parameters, necessary for
the training process — Figure 8.

s
~

Abstract_element_builder

= Attributes

=/ Operations

+ build_Ir_scheduler_decoder(self, _optimizer)

+ build_Ir_scheduler_fine_tunning(self, _optimizer)

+ build_model(self)

+ build_optimizer_decoder(self, _model : nn.Module)
+ build_optimizer_fine_tunning(self, _model)

+ build_train_dataloader(self, train_dataset : Dataset)
+ get_model_configld_path(self, _ft id)

+ get_next_finetunningID(self)

+ get_number_of sweeps(self)

+ get_number_of unfreezing_layer_in_backbone(self)
+ get WandB_config_dict(self)

Figure 7. Abstract element builder class

>

Abstract_train_mode

Attributes

Operations

+ get number_of epochs_decoder(self)
+ get number_of epochs_fine_tun(self)
+ get path test dataset x(self)

+ get path test dataset y(self)

+ get path train dataset x(self)

+ get path train_dataset y(self)

+ get raw data_path_test(self)

+ get raw_data path train(self)

+ must _load best model(self)

+ must_save_best model(self)

Figure 8. Abstract train mode class

Its main purpose is to support two cases. One

of them — End-to-End testing that is provided by

2,2025 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

8

CUCTEMHBIN AHAJIN3

Sanity check train_mode implementation, in order
not to wait till the end of sweeps with all the training
and testing data, like with a Real train_mode
implementation, — second case for real training. Another
implementation is a Preliminary_eval train_mode
class, which is inherited from the Real train_mode. 1t
provides a way of cutting off obviously bad solutions
with training on partial amount of data and number of
epochs. It’s a means of preliminary evaluation before
other sweeps with the Real train_mode, and is used as
a first phase of parameter search.

During that first bout of search, it was found
out, that a simple U-Net model and a simple attention
U-Net model, both written from scratch, works
worse than an attention U-Net model, based on a
pretrained ResNet50 backbone. Usage of ResNet152
as a backbone improves precision a bit, but at the
same time drastically hinders performance in terms of
calculation time.

During the second search iteration, it was
determined that channel-wise attention is generally
better for the task than spatial attention, as well as
that 2D transposed convolution is a better choice for
upsampling than a bilinear method.

The third iteration gave preliminary values for
number of internal channels in attention blocks, batch
size for decoder training, best optimizer and learning
rate. While reaching a descent performance on majority
of possible terrains, further analysis of badly predicted
cases revealed that a chosen configuration struggles to
cope with the case when the observer is situated in the
forest near a border with open space, when they can
already through the forest — Figure 9 (colors on a surface
mask correspond to different surfaces: open space, forest,
shrubs).

True mask
0
i \

0

Surface matrix

Height matrix

0 100

Figure 9. True mask while looking through the forest

Within the frame of research, in order to
incentivize the network to understand that it deals with
the forest, an auxiliary head with a fully connected
layer was added. Its goal is to provide a binary
classification: whether an observer is situated in the
forest or not, with a contribution to the main binary
cross entropy loss (nn. BCELoss), whereas Intersection

over Union (IoU) is the metric for parameter selection.
Schematic representation of the resultant architecture
(without attention gates and details) is presented on
Figure 10.

\
v
\

|
|
|

\v

ResNet30 encoder I —_—

Decoder

Zero Padding
Max Pool
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block
Conv Block
ID Block

|
|
|
i
|
|
v/

v
Flatten
FC Block

Figure 10. Auxiliary head for binary classification

As a result, such form of feature engineering
wasn’t successful. The situation when an observer
can see through the forest towards open space is
quite rare in the train dataset. So, as an aftermath
of that, there is class imbalance. There are common
solutions to cope with imbalanced datasets like usage
of weighted random sampler [8], class weighting [9],
synthetic minority oversampling technique (SMOTE)
[10], or simple additional oversampling through
augmentation of minority samples or some
combinations. In our case additional data can be just
generated from the simulator, with a stipulated rule,
that we add a current case if both requirements are
true: the observer is in the forest and there is an open
space in the vicinity. After enriching the training
dataset, the network started performing much
better, which was evident even during preliminary
evaluation.

The forth iteration of hyperparameter search
involves usage of the real train mode with full
datasets and number of epochs for every considered
combination of hyperparameters. It eventually allowed
picking a set best hyperparameters for decoder.

The fifth iteration involves unfreezing encoder
and search of hyperparameters for fine-tuning. After
that procedure, the network is evaluated on a test
dataset, not a validation one used before, in order to
check possible overfitting in hyperparameter search. It
demonstrates an average IoU of 0.95 on a test set. Some
examples of predicted masks (areas of visibility) are
presented on Figure 11.

The network was trained on relatively low
resolution of 128x%128 in order to check the potential
possibility of the approach, but in case of a higher
resolution it will work the same way.

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

2,2025

SYSTEM ANALYSIS 9

Height matrix Surface matrix Predicted mask True mask Conclusions
0+ 0

Current diversity of neural network architectures
makes it possible to utilize them for solving different
domain-specific tasks, including building an area of
visibility, given data from a digital map. Usage of
solutions for hyperparameter search allows evaluating
a plethora of possible configurations. Ancillary
architectural solutions provide a way for stitching
building blocks together, assuring their conformation
for performing search among their possible
combinations within the architectural space. The final
network in this work is based on combination of parts
from different solutions, like the attention U-Net form
the first source [6], different forms of attention from
the second source [11] and finally — concrescence
with a popular pretrained backbone in search of best
performance. Such a strategy seems to be effective
for solving real machine learning tasks for applied

Figure 11. Examples of predictions science.

REFERENCES

1. Mathematical model complex for military grouping efficiency assessment: [Electronic resource] // URL: http://
en.belfortex.com/page/show/9. (Date of access: 15/11/2024).

2. E. Rulko, et al. Application of a simulation system for optimizing solutions based on elements of the theory of reflexive
control. Collection of scientific articles of the Military academy of the Republic of Belarus. 2017. Ne 32. P. 153-162.

3. Olaf Ronneberger, et al. U-Net: Convolutional Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597.

4. Ozan Oktay et al. Attention U-Net: Learning Where to Look for the Pancreas. 2018. arXiv: 1804.03999.

5. Weights & Biases: [Electronic resource] / URL: https://wandb.ai/site. (Date of access: 15/11/2024).

6. PyTorch implementation of U-Net, R2U-Net, attention U-Net, attention R2U-Net. https://github.com/LeeJunHyun/
Image Segmentation. 2018.

7. E. Gamma, et al. “Design Patterns Elements of Reusable Object-Oriented Software,” Addison-Wesley, Massachusetts,
1995.

8. PyTorch documentation. Weighted random sampler: [Electronic resource] // URL: https://pytorch.org/docs/stable/
data.html#torch.utils.data. WeightedRandomSampler. (Date of access: 15/11/2024).

9. How to Improve Class Imbalance using Class Weights in Machine Learning?: [Electronic resource] // URL: https://
www.analyticsvidhya.com/blog/2020/10/improve-class-imbalance-class-weights/. (Date of access: 15/11/2024).

10. N. V. Chawla, et al. SMOTE: Synthetic Minority Over-sampling Technique. 2011. arXiv: 1106.1813.

11. Long Chen, et al. SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning.
2016. arXiv: 1611.055%94.

2,2025 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

10 CUCTEMHBIN AHAJIN3

PYJIBKO E.B.

HNCIIO0JIb30BAHUE U-Net CETH C MEXAHU3MOM BHUMAHHUA COBMECTHO
C APXUTEKTYPHBIMHM HAJICTPOMKAMM 1151 ®PEMUMBOPKA PyTorch B PAMKAX ITIOMCKA
I'NMNEPIIAPAMETPOB ITIOCPEACTBOM BUBJIMOTEKH Weights & Biases
JJIsA ITIPEACKA3BIBAHUA OBJIACTH BUANMMOCTHU ITIO KAPTE MECTHOCTH

Boennas akademus Pecnybauxu Benapyce
2. Munck, Pecnybauxa benapyce

Annomayus. Texywuil yposenv passumus 2ny60Ko20 00yYeHUs NO360JAem 3AMEeHUMb HeUpOHHbLMU
cemamu cywecmeyowue cneyuguueckue O MOOCAUPOSAHUs BOEHHbIX Oellcmeuti anzopummol. Ilouck
2unepnapamempos 0aém B03MOICHOCb — ONPeOeiumb CMPYKMypbl cemetl, nooxoosaujue Oas PeuleHus.
coomeememeyrowux 3a0ay. /lannas paboma onucvléaenm npoyecc NOUCKA CIpyKmypbl cemu OJist RPeOCKaA3aHUsL 30Hbl
ONMUHECKOU BUOUMOCTIU HA OCHOGE (hpazmenma yupposoi Kapmol MECMHOCMU U NPeoa2aem apXumeKmypHble
pewenus 0 KOMOUHUPOBAHUSL BO3MONCHBIX COCMABHBIX HACMel cemu, 00eCcneyusas ux CO8MeCmumMoCmb
6 PAMKAX NOUCKA HAumyuuie2o pewieHus. B xauecmee unanvro2o eapuanma npeoiazaemcsi Ucnoib308aHue
U-Net apxumexmypbi ¢ NOKAHATbHbIM MEXAHUZMOM SHUMAHUS U OHKOOepom Ha ocHoge cemit ResNet50.

Knrouesvie cnosa: anyboxoe ooyuenue, U-Net, mexanuzm 6HUMAHUSL, Ce2MEHMAaylsl, ROUCK 2UNEPRAPAMEMPOS,
W&B, wiabnoumnviii Mmemoo

Pyabko EBrenmii BUKTOpOBHY, KaHIUIAT TEXHUYECKUX HaykK, AOLEHT. HadanbHUK Hay4yHO-
HCCIIEIOBATENILCKON JTAOOpaToOpHM MOJEIMPOBAHMS BOCHHBIX ~ AEHCTBUH YUPEKJICHUS
oOpazoBanusi «Boennas axagemus PecmyOmukn bemapyce». Cdepa HaydHBIX HHTEPECOB:
nybokoe 00ydeHHe, MallMHHOE 3peHHe, 00yUeHHUE C MOAKPEIUICHUEM, HeHPOHAYKH, aKTHBHBIIT
BBIBOJI, IIPUHIINTI CBOOOIHOMN SHEPruH, peIeKCHBHOE YIpaBJICHHE.

Eugene Rulko, PhD, associate professor in computer science. The head of the research laboratory
of military operation simulation of the educational institution «Military academy of the Republic
of Belarus». Research interests: deep learning, computer vision, reinforcement learning, neurosci-
ence, active inference, free energy principle, reflexive control.

E-mail: eugenil533@gmail.com

CUCTEMHBINA AHAJIN3 U TIPUKJIATHASI THOOPMATHUKA 2,2025

