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This work discusses speech emotion recognition via custom feature engineering and feature selection
techniques using mel-frequency cepstral coefficients as initial audio features. Proposed transfer learning approach
consist in employing the backward-step selection algorithm for feature selection using statistical learning classi-
fiers, the obtained subset of features than subsequently used to train feedforward neural networks. This technique
allowed us to significantly reduce initial feature vector size while increasing models’ prediction quality. We used
TESS and RAVDESS datasets to estimate the performance of proposed method. To evaluate the quality of the model,
unweighted average recall (UAR) was used. Experimental results demonstrate promising accuracy (UAR = 82 %
Jor TESS and UAR = 53 % for RAVDESS), showcasing the potential of this approach for applications like virtual

agents, voice assistants and mental health diagnostics.
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Introduction

Speech emotion recognition (SER) is an important
aspect of artificial intelligence technologies for many
years [1-2]. One promising direction in solving SER
tasks is the use of deep learning to extract high-level
features from audio data. Many studies focus on the use
of convolutional [1] and recurrent neural networks [2],
which allow for more efficient capture of temporal and
frequency patterns in speech signals.

However, neural network driven approaches
have drawbacks that may limit their applicability. These
include high computational complexity, as well as the
need to train deep models on large amounts of data. In
addition, neural networks are often characterized by
low interpretability, making it difficult to understand
the causal relationships between input data and model
predictions. This makes it difficult to analyze the results
and understand them, which may be undesirable in some
applications, especially those related to medicine.

Thus, simpler statistical  learning-based
approaches still remain relevant. Firstly, they are highly
computationally efficient, allowing data analysis to
be performed on conventional computers. Secondly,
they provide higher interpretability of results, allowing
researchers to get a better understanding on which
features influence the final classification result.

Problem of reducing the dimensionality of the
feature space is relevant to both neural networks driven
solutions and statistical models such as linear discriminant
analysis (LDA) or support vector machines (SVM). In
case of neural networks models it helps to optimize the
computational complexity of the model. In case of using
statistical models, it helps improve the interpretability of
the model as well as reduce models’ complexity.

In this work we propose a novel hybrid approach
that leverages the strengths of backward stepwise
selection (BSS) of features in conjunction with traditional
machine learning models such as SVMs and LDA to
enhance the performance of feedforward neural networks
(FFNN).

The resulting feature subsets, determined
separately for SVMs and LDAs, were then combined and
utilized as inputs to train feedforward neural networks.
This approach effectively reduced the dimensionality of
the input feature space, allowing the neural networks to
focus on the most informative features.

Furthermore, we conceptualize this methodology
as a form of transfer learning, where the knowledge
gained from feature selection for SVMs and LDA is
transferred to the neural network. The neural network,
trained on these carefully curated subsets of features,
demonstrated significant improvements in performance,
including higher classification accuracy and reduced
training times, compared to training on the full feature
set. This hybrid approach highlights the potential of
combining traditional feature selection techniques
with neural networks to achieve both efficiency and
effectiveness in high-dimensional data applications.

NN-based SER system overview

Fig. 1 shows the proposed process of developing
SER system.

According to the diagram in Fig. 1, the
development process is based on the use of an annotated
speech base, which contains samples of speech signals
with emotion labels. First, pre-processing of speech
signals is performed, which includes the calculation of
the mel-frequency cepstral coefficients (MFCC) with
number of its statistics.
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Figure 1. The process of developing NN-based SER system

On the feature selection step computationally
effective statistical models (SVM and LDA) are used.
Finally, FFNN model is trained and its performance is
estimated on selected feature set.

Feature extraction

To effectively represent the speech signals and
capture the emotional characteristics embedded within,
we extracted a comprehensive set of acoustic features.
Specifically, we computed a 306-dimensional feature
vector for each audio sample. This feature vector
includes MFCCs, along with their first- and second-order
temporal derivatives (delta and delta-delta coefficients).
Additionally, statistical descriptors such as interquartile
range (IQR), skewness, and kurtosis were included
to characterize the distribution and variability of the
acoustic features. This approach enables the feature
extraction process to handle audio inputs of varying
lengths, ensuring a robust and consistent representation
for subsequent analysis and classification. The detailed
description of the feature extraction process can be found
in [3].

Feature selection for multiclass classification

A number of methods have been developed for
feature selection, such as Relief [4], LASSO [5], mRMR
[6], etc. However, the majority of feature selection
method is developed for binary classification. In this
work we propose to use backward stepwise selection
(BSS) algorithm [7] that can be applied to multiclass
classification problem.

BSS is a widely used feature selection technique in
machine learning that aims to reduce the dimensionality
of the feature space while preserving the model’s
predictive performance.

Below we give a brief description of the BSS
algorithm.

Let X denote the Nxp matrix of feature vectors
extracted from the speech dataset, where N is the
number of audio recordings and p — number of extracted
features. Suppose that we have model M and procedure
P, that estimates the performance of the model M on the
given set of features. In this case BSS describes by the
following algorithm.

Algorithm. BSS procedure.
Input: M — classification model,
P—performance (UAR) estimation procedure,
X — matrix of feature vectors;
Output: ind,  — list of selected feature indices;
Begin:
1:ind ={1,2,..,p} //initialization
2:Set P, = P(M, X, ind,) // compute the initial
performance of the model with all features.
3: Create a vector P of size p, consisting of zeroes.

4: FeatureRemoved = True // flag
5: while (FeatureRemoved== True) do

6: FeatureRemoved = False
7: for each feature j € ind,
8:ind,, =ind,/{j} // remove j from ind,

temp BSS

9:P,,. 1 =PM, X, ind, )/ estimate performance
using features indmnp
10: end for

// identify the feature whose removal results in
the highest performance:
1 high ArgmMax; (vaorex_ best )-
12 P, Uy 2P
13: ind, =ind, J{j h,.gh} // remove j_high from ind

BSS

14: P =P s Ui // update best performance
variable

15: FeatureRemoved = True // set flag

16: end if

17: end while
18: return ind
End

BSS feature selection, while effective for many
traditional machine learning algorithms such as SVMs
or LDA, is less suitable for neural networks (NN). It is
important to mention that the evaluation process in BSS
relies on iteratively training and validating the model
with different feature subsets. NN, however, require
significant computational resources for training, as
their optimization often involves numerous iterations
using gradient-based methods. The repeated training of
NN for every feature subset during BSS can therefore
become computationally prohibitive. In order to address
this problem, we suggest to take resulting feature subset,
determined for statistical model (SVM or LDA), and
then use it as inputs to train FFNN. This approach will be
explained and demonstrated in the next section.
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Transfer learning

In this work we studied the integration of feature
selection techniques with NN-based models to enhance
performance in a SER task. Specifically, we employed
the BSS algorithm as the feature selection method with
three different classifiers: LDA, SVM with a linear kernel,
and SVM with a radial basis function (RBF) kernel. This
approach aimed to systematically identify and retain the
most relevant features from the original feature set by
iteratively removing less significant features, thereby
reducing the dimensionality of the input space while
preserving critical information necessary for emotion
recognition.

The subsets of features selected through this
process were subsequently used to train FFNN,
comprising one, two, and three layers. Each FFNN
model was trained from scratch, enabling an unbiased
evaluation of the impact of feature selection on model
performance.

Datasets

In this study two datasets were used: the Toronto
emotional speech set (TESS) [8] and the Ryerson
Audio-Visual Database of Emotional Speech and Song
(RAVDESS) [9].

The TESS consists of 2,800 audio recordings
produced by two actresses, aged 26 and 64, who express
six basic emotions—anger, disgust, fear, happiness,
sadness, and surprise—along with a neutral emotional
state. Each recording features one of 200 target words
embedded in the carrier phrase "Say the word [target]",
ensuring uniformity in sentence structure. The audio
files are stored in WAV format (16 bits, 24 kHz). The
dataset provides high-quality emotional expressions due
to the use of trained actors, making it an ideal resource
for developing and evaluating emotion recognition
systems.

As for the RAVDESS dataset, we used only a part
of the dataset, namely, RAVDESS Emotional speech
audio. This part of RAVDESS contains 1440 WAV files
(16 bits, 48 kHz): 60 entries for each of 24 professional
actors (12 males, 12 females). Phrases with a neutral
North American accent. Speech emotions include
expressions of neutrality, calmness, happiness, sadness,
anger, fear, surprise, and disgust. All emotional states,
except for the neutral one, were voiced at two levels of
emotional loudness (normal and increased). The actors
repeated each vocalization twice.

Experimental setup

We used one-, two- and three-layer FFNN as
classifiers trained on the feature selected using BSS
algorithm described above and simpler machine learning
models (SVM and LDA in our case). One-layer FFNN
classifier consist from one fully-connected (FC) layer and

softmax activation in the output layer (Fig.2, a). We used
the following notation this classifier d, xd , where d, —
dimension of the input vector and d ,— output dimension
(it equal to the number of emotions). Two-layer FFNN
classifier (Fig.2, b) had topology d, *[d, /2]*d & where
d, /2 —is hidden layer dimension and [a] - floor operation.
Three-layer FFNN had topology d, x[d /21x[d /41xd .

In all NNs for constructing hidden layer ReLU is used as
the activation function.

Feature FC layer
vector din X d()ut
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[ | >
g Output
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Figure 2. FFNN-based classifier: a) one-layer; b) two-layer

We trained all networks using the Adamax
optimizer with an initial learning rate of 3e-4, weight
decay 1e-4 and a batch size of 100, the number of epochs
is equal to 500.

To test the classifiers, the k-fold cross-validation
method was used [4]. When using TESS dataset, the data
was split into two k-fold blocks (one actor for training
and one actor for validation) since there are only two
actors. When using RAVDESS dataset for training and
validating the data was split into blocks as follows (actor
numbers are given in brackets):

- Block 0: (2, 5, 14, 15, 16);

- Block 1: (3, 6, 7, 13, 18);

- Block 2: (10, 11, 12, 19, 20);

- Block 3: (8, 17, 21, 23, 24);

- Block 4: (1, 4,9, 22).

This split order was proposed in [10]. The chosen
strategy is that each block should contain the same
number of randomly selected samples for each class.
In this case, the condition that each actor is represented
either by the training or the validation set, but not by
both, should be met.
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Experimental results

First step of experiment was to estimate the
performance of the BSS algorithm using different

statistical

classification models.

The

experiments are presented in Tables 1.

results of

Table 1. Feature selection experimental results (UAR)

F M-
Dataset eatl{re LDA S.V SVM-rbf
selection linear
No (fall - 454 0.588 0.619
vector)
TESS 0.714 0.746
BSS (148 °f§;’§lr(elf)3 218
features) features)
No (Rl 460 0.461 0.461
vector)
RAVDESS 0.538 0.475 0.493
BSS (190 (299 (286
features) | features) | features)

As we can see in Table 1 results from the TESS

Table 2. UAR of FFNN-based classifiers on the TESS

Full SVM-lin- SVM-
LDA-B
feature S8 ear-BSS rbf-BSS
feature set
vector feature set | feature set
1-layer
FFNN 0,654 0.675 0,765 0,699
2-layer
FFNN 0,678 0.671 0,780 0,716
3-layer
FENN 0,743 0,706 0,821 0,749

Table 3. UAR of FFNN-based classifiers

on the RAVDESS
Full SVM-lin- SVM-
LDA-B
feature S8 ear-BSS rbf-BSS
feature set
vector feature set | feature set
1-layer
FENN 0,421 0,432 0,425 0,448
2-layer
FENN 0,463 0,464 0,465 0,472
3-layer
FENN 0,473 0,474 0,488 0,488

dataset showed that using the full feature vector yielded
baseline UARs 0f 0.454 for LDA, 0.588 for SVM-linear,
and 0.619 for SVM-rbf. After applying BSS, significant
improvements were observed, with LDA achieving
0.714 using 148 features, SVM-linear reaching 0.808
using 183 features, and SVM-rbf achieving 0.746
with 218 features. Among the models, SVM-linear
showed the most notable improvement, highlighting the
effectiveness of BSS in optimizing feature subsets for
this dataset.

For the RAVDESS dataset, the full feature
vector resulted in consistent baseline UARs of 0.460
for LDA, SVM-linear, and SVM-rbf. BSS led to
modest improvements, with LDA reaching 0.538 using
190 features, SVM-linear achieving 0.475 with 299
features, and SVM-rbf improving to 0.493 using 286
features. While the performance gains on RAVDESS
were less pronounced than on TESS, the application
of BSS still provided measurable improvements,
particularly for LDA.

Overall, results obtained from the first step of
the experiment confirms our hypothesis that BSS can
be an effective feature selection method, significantly
enhancing classification performance while reducing
the dimensionality of feature sets.

The second step of the experiment conducted
using the subsets of features selected through the BSS
algorithm during the first step to train FFNN with one,
two, and three layers (see Fig.2). Each FFNN model was
trained from scratch, allowing for an unbiased evaluation
of how feature selection influenced NN performance.
The results of these experiments are presented
in Tables 2 and 3.
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As we can see in Table 1 results from the
TESS datasetResults presented in the tables clearly
demonstrates that feature selection significantly
enhances classification performance across both
datasets, with the TESS dataset showing more
pronounced gains than RAVDESS. For TESS, linear
SVM with BSS achieves the highest UAR (0.808)
among traditional classifiers, and a 3-layer FFNN with
the SVM-linear-BSS feature set reaches the top UAR
of 0.821. These results demonstrate the effectiveness
of dimensionality reduction in simplifying the data
and improving classification accuracy, especially for
simpler datasets like TESS.

RAVDESS exhibits smaller but still notable
improvements from feature selection, with LDA
benefiting the most (UAR increasing from 0.460 to
0.538 using BSS). Neural networks also improve with
deeper architectures, achieving their highest UAR
(0.488) using the SVM-rbf-BSS feature set and a 3-layer
architecture. This indicates that while RAVDESS is
more complex, carefully selected features combined
with appropriate models and deeper architectures can
still enhance performance.

An important observation is that, without feature
selection, the 3-layer FFNN achieved a UAR of 0.473.
However, when the feature vector was reduced using
the proposed feature selection technique, the UAR
improved to 0.488.

Overall, these results highlight the importance
of feature selection in reducing noise and improving
classification accuracy, particularly for traditional

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE



42 OBPABOTKA UH®OPMAIIMU Y IPUHATUE PEINEHUI

classifiers. For neural networks, the combination of
deep architectures and curated feature sets leads to
superior performance, demonstrating the downstream
benefits of dimensionality reduction for deep learning
models.

Conclusion

In this work, we studied the impact of feature
selection on the performance of classifiers using statistical
models and FFNN. The primary objective was to assess
the effectiveness of the BSS algorithm in selecting
optimal subsets of features that enhance UAR metric for
speech emotion recognition task while reducing feature
vector dimensionality.

The first experiment involved evaluating the
performance of the BSS algorithm using three statistical
classification models: LDA, SVM-linear and SVM-rbf.
For the TESS dataset, BSS led to substantial performance
improvements across all models, with SVM-linear
achieving the highest UAR of 0.808 after feature
selection compared to 0.588 when using the full feature
vector. On the RAVDESS dataset, while improvements
were less significant, BSS still enhanced performance,
particularly for LDA, which showed a UAR increase
from 0.460 to 0.538. These results highlight the ability of

BSS to reduce feature dimensionality effectively while
improving classifier efficiency and UAR score.

In the second experiment the subsets of features
identified by BSS were used to train FFNNs with one,
two, and three layers. The results indicated that feature
selection positively influenced FFNN performance. For
example, on the TESS dataset, FFNNs trained with
reduced feature sets consistently outperformed those
trained with the full feature vector. These findings
underscore the utility of BSS in optimizing input features
for NN training, leading to better performance and
computational efficiency. Thus, a 3-layer FENN with
the SVM-linear-BSS feature set reaches the top UAR
of 0.821 on the TESS Dataset. Moreover, the 3-layer
FFNN achieved a UAR of 0.473 on the RAVDESS
dataset without feature selection, but this score improved
to 0.488 when the feature vector was reduced using the
proposed feature selection technique.

In conclusion, the proposed feature selection
approach demonstrated its effectiveness using both
statistical classifiers and neural networks, yielding
substantial improvements in SER tasks while reducing
feature dimensionality. By combining feature selection
with neural network training, we showed that even
complex models like multi-layer FFNNs can benefit
from a carefully curated feature set.
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KPACHOIIPOILIUH J].B., BALIIKEBUY M.U.

OTBOP ITPU3HAKOB HA OCHOBE TEXHUKHN IEPEHOCA OBYYEHUA
JIJISI KITACCU®UKAIIMU SMOIIUA B PEYU C TIOMOIIBIO ITOJTHOCBA3ZHOM
HEMPOHHOM CETHU NPSIMOT'O PACITPOCTPAHEHMSI

benopycckuii cocyoapcmeennulii ynugepcumem un@opmamux u paouodneKmpoHuKu
2. Munck, Pecnybnuxa Benapyce

B pabome uccnedyemcs 3adaua pacnosnagamus dmMoyull 6 peuu ¢ NoMowblo Memood NpOeKmupo8aHus
u ombopa peuesvblx NPUHAKOS. B Kauecmee UCXOOHBIX ayOUO NPUSHAKOS UCHONb30GANUCH MEN-YACTOMHbLE
Kencmpanvhsie Kodgguyuenmol. B pabome npednrazaemcsi nooxoo, 8 0CHO8e KOMOPO2O JedCUm uoes nepeHocd
00yUeHUs, 3aKTIOYAEmcs 8 UCNONb308AHUU Memodd NOWA2S08020 UCKTIOYEHUSl NPUSHAKOE NpU  NOMOWjU
cmamucmuyeckux mooeneti — kiaccugpuramopos. Omobpannoe noOOMHONCECHBO NPUSHAKOS 3AMeM UCHONb3Yemcsl
0N 00yueHus NOAHOCEAZHBIX HEUPOHHBIX cemell NpsAMo2o pacnpocmpanenus. Takoll nooxo0 noseonsem
BHAYUMENbHO YMEHbUUMb PA3MED UCXOOHO20 NPUSHAKOBO2O NPOCMPAHCMEA U OOHOBPEMEHHO NOBLICUNb KAYeCTE0
npeockazanuil mooenell. B xauecmee nHabopos OaHHLIX 04 NOCHMAHOBKU 3KCHEPUMEHMO8 ObLIU UCHOIb308AHbI
TESS u RAVDESS. Mempukoti oyeHKu Kadecmeda KAACCUDUKAMOPOS HNOCIVIHCULA HEB36CUIeHHASI CPEOHSs
nonnoma (unweighted average recall — UAR). Pezynemamut sxcnepumenmos asisaomes muozoodeuwjarowumu (UAR
onsa TESS = 82 %, UAR ona RAVDESS = 53 %), mem camvlm 0emMOHCmMPUpys nepcnekmueHOCmb NPedioiCeHH020
nooxo0a K 3adave Kiaccupurayuy SMoyull no peyu.

Knrouesvie cnosea: pacnosumasamue smoyuii, omoop npusnaxos, MUKK, Heuponuvie cemu, auHelHull
OUCKDUMUHAHMHDLIL AHATU3, MEMOO ONOPHBIX BEKIMOPO8
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