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The main hurdle for terrain relative navigation systems is the incongruity of visual features between a patch 
of a satellite reference map and a view from an onboard UAV camera. Images are taken during different time of year, 
under different weather, vegetation and lighting conditions, with different angles of observation. This work propos-
es the usage of deep feature template matching, where features are extracted during unsupervised training using  
a tri-plet loss. It provides semantic understanding, agnostic to terrain transformations. In order to overcome strug-
gling to navigate over featureless terrains, the work proposes additional usage of visual odometry with the proce-
dure of stick-ing to the map after encountering enough features, with the procedure of hypothesizing over possible 
locations. Pass-ing a fragment of the reference map through the trained feature extractor, applying an entropy filter 
and then a path-finding algorithm allows planning a flying path over areas rich of features relevant for navigation.
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Introduction

Current proliferation and accessibility of open 
digital maps that include satellite images in confluence 
with a plethora of open source deep learning based 
solutions of performing feature extraction, visual 
odometry (VO) and simulta-neous localization and 
mapping (SLAM) is the impetus of developing manifold 
terrain relative navigation systems (TRN).

The image of a terrain fragment on a map usually 
has been taken during different time of year, under 
different weather, vegetation and lighting conditions, and 
with different angles of observation in comparison with a 
current camera view. Some objects on maps like spots of 
light, reflected from iridescent objects, or cars on roads 
must be discarded from being used as landmarks and 
flying over a field, forest or some snowy surface may not 
present enough deep features to stick to a reference map. 
All this rep-resent a palpable hurdle to existing TRNs. 
To address these issues this work proposes the us-age of 
deep feature template matching, where the features are 
extracted during unsupervised training using a triplet loss 
over different terrain patches. This allows performing 
matching of ter-rain patches based on their semantic 
content with the imparted knowledge of a neural net-
work about possible transformations of terrains over 
different time and conditions, including understanding of 
features that should be dis-carded. Combination of this 
solution with deep learning based VO allows performing 
navigation when a terrain doesn’t have enough deep fea-
tures to stick to the reference map.

Additionally, having a model that is ca-pable of 
extracting deep features relative for navigation over a 
satellite map allows applying an entropy filter to those 
extracted features and to consequently determine routes 
of a UAV with enough visual features to stick to.

Related Work

Among multifarious solutions of TRN systems, 
several works represent especial interest in terms of using 
deep learning for extracting weather, time of year, lightning 
conditions ag-nostic features. An approach based on 
autoen-coder architecture is presented in [1]. During the 
first stage of training the network takes a tile of a satellite 
image (ortho tile) and reconstructs a corresponding tile of 
map’s abstract layer. The second stage of training implies 
the usage of given latent space to reconstruct the original 
tile acquired from custom video – Figure 1. 

The process of locating involves rotating, scaling 
images and cropping 5 tiles for a single iteration of 
template matching – Figure 2.

As the demonstrated experiments indi-cate, the 
approach works well when flying over a terrain that has 
rich feature representation on a correspondent abstract 
map, like a city land-scape, because the neural network 
learns how to produce an abstract map tile from a satellite 
one. It seems pretty difficult for this approach to move 
over some open area of fields which will be represented 
as just featureless white space.

A seasonally invariant deep transform for visual 
terrain relative navigation is presented in [2]. As the 
name suggest it involves targeted use of deep learning 
within an image transform architecture, which converts 
seasonal imagery to a stable, invariant domain that can 
be used by conventional algorithms (like homography 
via feature matching from OpenCV) without modi-
fication. During training, a U-Net like image transform 
model is exposed to matching cross-seasonal image pairs 
in twinned fashion – a single transform is identically 
shared between two parallel streams, with registration 
performance between the outputs used as a loss function 
to optimize the transform weights – Figure 3.
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Figure 2: Navigation process [1]

During the inference stage the reference map 
image and a camera view image are subjected to the 
learned transformation and the resultant images allow 
using homography via feature matching in an ordinary 
way – Figure 4. 

According to the work [2] this approach 
demonstrates superior performance under extreme 
seasonal changes while also being easy to train and 
highly generalizable. As the result of preprocessing, 
images of summer and spring mountain terrain  
will be transformed into pictures of ridges –  
Figure 5.

Figure 1. Mechanism of getting latent space [1] 

Figure 3. Season agnostic training process [2]

Figure 4. Inference preprocessing and matching [2]



CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА                                     1, 2025

However, the open example of the approach usage 
demonstrates that it requires relatively high altitude 
to get enough landmarks like buildings or mountain 
terrain features and due to the incongruity in angles of 
observation on satellite maps some objects, especially 
high buildings, appear different to a degree that their 
outlines won’t match while using conventional feature 
matching, without taking into account semantic context – 
Figure 6.

It’s also necessary to mention that the major 
providers of open maps such as Google, Bing or Yandex 
usually present a terrain over the Republic of Belarus 
during seasons without extensive snow coverage, 
which represent some hurdle for the aforementioned 
approach [2] and the approach that will be presented  
in the current work.

But it can be surmountable by using for training 
existing terrains from other places of the world or by 
different map providers, which contain examples of 
extensive pieces of land with snow coverage that can also 
be found on satellite maps without it.

Modern TRN systems also extensively use 
existing open source keypoint matchers. The advantage 
of deep learning based matchers such as LoFTR 
(Local Feature Matching with Transformers) [4] over 
ordinary keypoint detectors such as OpenCV ORB [5] 
was presented in [6] – Figure 7. Other algorithms from 
OpenCV such as SIFT, SURF or BRIEF don’t seem to 
work much better, whereas there is a plethora of opens 
source deep learning based matchers, differing in year 
of inception, accuracy and performance, such as: 
KP2D (Neural Outlier Rejection for Self-Supervised 
Keypoint Learning) [7], Super-Glue (Graph Neural 
Network combined with an Optimal Matching layer) [8], 
EfficientLoFTR [9], LightGlue [10] and other. Some 
of solutions are just modified and refined versions of 
previous ones. During the research conducted within the 
framework of this work, the majority of solutions were 
tested in practice, relatively to the TRN task.

Figure 6. The same place in Minsk city from Bing (above)  
and Google (below) providers

Especially apt for that in terms of performance 
and accuracy was GlueStick [11], which provides robust 
image matching by sticking points and lines together. 
Lines are especially important while using manmade 
landmarks – Figure 8a. At the same time it also extracts 
point based features – Figure 8b. This allows feature 
matching (Figure 10c) and subsequent homography 
alignment (Figure 10d).
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Figure 5. Season agnostic transformation [3] 
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Figure 7. Comparison in precision with flying over a real terrain [6]

c
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b

Figure 8. Matching using GlueStick [11]

a b
Figure 9. Usage of GlueStick for TRN per se (a) and over the same terrain with different angles (b)

However, the usage of GlueStick per se 
for matching two patches of terrain from different  
sources wasn’t so robust (Figure 9a), whereas  
it has demonstrated relatively high precision for the 

purpose of VO, when it’s necessary to keep track  
of the same features viewed from different  
angles over time due to the process of flying (Figu- 
re 9b).
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Proposed approach

The suggested approach of this work is based 
on deep feature template matching. There are existing 
solutions of that, like robust tem-plate matching using 
scale-adaptive deep convo-lutional features [12] or 
QATM (quality-aware template matching for deep 
learning) [13]. In [12] scale-adaptive deep convolutional 
feature vectors are extracted from the template and the 

input image via the pretrained VGG-Net – Figure 10. 
Each layer represents a different level of deep features 
of the actual image contents. Normalized cross-
correlation (NCC) is used to measure the distance 
between features of the template and the image to detect 
the target image patch. Nonetheless, existing pretrained 
networks are not necessarily apt for extracting features 
that are relevant for comparing two images of the same 
terrain under different conditions. 
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Figure 10. Scale-adaptive deep convolutional feature extraction based template matching [12]

Usually neural networks that are used as  
backbones for computer vision tasks are pretrained on 
datasets like ImageNet [14]. It means that it can be used 
for finding a cat on a picture, using textures and high 
level features such as eyes, nose, ears and whiskers, 
but will struggle with finding a specific patch of 
terrain, because of the necessity to understand domain 
specific transformations caused by snow or vegetation 
coverage and discrepancy between seasons and lightning 
conditions. It’s similar to the face recognition task, when 
we need to build deep feature space in which the same 
face has the same features [15]. Additionally it may allow 
moving along that space to perform a smooth transition 
from one face to another. For extracting such deep 
features this paper suggests using a triplet loss [15] – 
Figure 11.

Figure 11. Triplet loss [15]

The main idea behind the triplet loss is to minimize 
the distance between an anchor (patch of particular area 
from source A) and a positive (patch of the same area 
from source B), both of which have the same identity 
(but may differ in terms season, angles of observation 
and so on) and at the same time to maximize the 
distance between the anchor and a negative of a different  

identity (random patch of a different area either from 
source A or B) – Figure 12.

Figure 12. Examples of triplets for rotation insensitive training

Performing matching, the orientation of terrain 
fragments must be the same. Giving the possible 
inaccuracy of an onboard compass, the network is also 
train to be agnostic to discrepancy in orientation within the 
range of 20 degrees. It’s achieved through augmentation 
in form of random rotation of positive image within that 
range during training (Figure 12 positive).
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For making the network agnostic to height un-
certainty, images can also be randomly scaled. In order 
to get a rich feature space, images cropped from Google 
maps zoom level 13 to 20. The network’s architecture is 
a modified version of ResNet50 – Figure 13.

Triplet loss for the training process is described 
like this [15]: 

where f (x) – function representing feature extraction;  
xa , xp , xn – anchor, positive and negative samples;  
N – batch size; α – bias.

Usage of Weights & Biases developer 
platform [16] proved to be effective for search of optimal 

hyperparameters such as: learning rate, batch size, 
dropout values, configurations of addons to the backbone 
and even pretrained backbone itself.

In case of not using an onboard compass for 
getting the rotation angle (may be connected with 
natural or artificially induced magnetic anomalies) the 
orientation must be determined only by comparing an 
image of observed terrain and the reference satellite 
map. For that a different approach to composing images  
for a triplet loss has been proposed. An image of the same 
area from a different source but with the same orientation 
is used as a positive sample, whereas an image of the 
same area, from the same source but rotated within 15 to 
45 degrees is used as a negative one – Figure 14.

(1)

Figure 13. Feature extractor architecture

Figure 14. Examples of triplets for rotation sensitive training

A single multi-head network may be used for 
both purposes: navigation and rotation correction – 
Figure 15. 

The training process in this case involves 
two stages: training of the rotation insensitive head 
together with the ResNet50 backbone and then freezing 
the backbone and training of the rotation sensitive 
head. Usage of a single net-work is expedient due 
to computational limitations of onboard hardware. 

Otherwise two separate networks (Figure 13) each 
for rotation sensitive and rotation insensitive feature 
extraction for navigation and angle evaluation 
respectively have proven to be better.

The actual process of navigation implies finding 
the location of a smaller image form camera on a rotated 
bigger image of the reference terrain view and shifting 
that reference view according to the flight in order not to 
move outside an area of search – Figure 16.

The reference image is acquired using 
preliminarily loaded onboard base of tiles, with the scale 
of map provider and ancillary scaling that correspond 
to the current height of flying in order to ensure scale 
congruity between images.

Extracted deep features allow performing quality 
aware matching based on image semantics. Usage of 
a convolutional network allows working with images 
of any existing standard resolutions and respective 
reference images. For two images on Figure 16 we’ll get 
two vectors of shape (2048, 32, 32) and (2048, 16, 16), 
so the task is boiled down to locate a patch of 16×16 on a 
patch of 32×32 – Figure 17.

Matching is performed by sliding an im-age 
view feature vector over a bigger reference image 
feature vector within the plane of view (a window of 
16x16 over one of 32x32) and calculating Euclidean 
distance between an image feature vector and a 
corresponding crop from the reference feature vector. 
A position with minimal distance will give the best 
matching.
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Figure 15. Two output head feature extractor

Figure 16. Task of locating camera image

Figure 17. Task of locating feature vector

The drawback of this approach is that we are 
not determining exact coordinates of our location. The 
coordinates of the reference image patch are known and 
we are locating relatively to it with the discretization of 
32 pixels (image of 1024x1024 is convolved to 32x32). 
But that uncertainty is not accumulated over the flight. 
It’s important to just properly shift the reference image 
according to UAV’s movement.

Auxiliary correction of the orientation angle 
by means of image comparing is performed after the 
iteration of location determining. In this case a current 
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camera view is compared with the set of rotated crops 
from the ref-erence source turned within the range  
of -10 to +10 degrees – Figure 18.

Figure 18. Task of correcting orientation

In a similar way, for that we extract deep 
features by a rotation sensitive head or a separate 
network and get the angle which corresponds to a crop 
image that provides a minimum distance in terms of 
feature space.

A complex of programs, connected via network, 
was created for experimental study of different facets 
of the suggested approach and proving their feasibility. 
A Unity 3d environment simulates flying over a terrain 
with different weather and lightning – Figure 19.

Defining a desirable route to fly is performed by 
setting a set of waypoints onto a map. During the flight 
time a model UAV determines its location by video 
feed and analyzes its necessity to turn when it’s in the 
vicinity of the next waypoint according to the route. 
That procedure is performed with a discretization that 
depends on UAV speed, height, view angle of a camera 
and reference image size in order not to fly outside the 
search area – Figure 20.

However, usage of template matching  
is struggling with flying over the deep forest, leading the 
determined location astray from a UAVs real position, 
moving forward towards a consec-utive waypoint – 
Figure 21.

Figure 19. Simulation environment

Initially, flying over roads, patch of forest  
crossed with roads, border of forest and shrubs, it could 
determine its location. Moving deeper in the forest 
it had failed. Like for a human, hovering on a balloon 
over featureless forest or desert, navigation relying  
only on a sight from above would be almost  
intractable.

One way to overcome that is to pass a big fragment 
of the reference map through the network, extract deep 
features and apply an entropy filter [17] to that. Then set 
start and end points on a map and use one of the path 
finding algorithms (like A* [18]) using only areas with 
high entropy level in terms of deep features, relevant for 
navigation – Figure 22. 



12                                        СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА                                     1, 2025

Figure 20. Simulation environment

Another way to address the problem of flight 
over terrain with poor features or with low altitude is 
to use VO as ancillary mechanism. There are several 
cases that illustrate the concrescence of the approaches. 
In case of strug-gling to perform template matching 
it doesn’t provide enough confidence, expressed in 
terms of Euclidean distance for one particular template 
location over an average value. It’s especially evident 
in cases of flying along the roads with low amount of 
distinctive features on the side-lines, because all the 
crops taking along the road will look relatively the 
same – Figure 23.

If such a situation with low maximum value 
over the average one exists, the reference map is shifted 
simply by a vector given by using VO between two 
consecutive images, like on Figure 9b. If we encounter 
an image that through template matching provides high 
enough confidence during N iterations – we align the 
reference map according to that. Number N is chosen 
in order not to move outside the search are due to 
possible VO errors. If we continue flying using VO (and 
shifting the reference map according to it) more than 
N iterations – we start analyzing Euclidean distance 
between consecutive terrain images. If distance exceeds 
a threshold – we perform a “looking around” procedure 
by soaring if necessary for getting a better vantage point 

and increasing the amount of features for performing 
template search over bigger space of the reference map 
in comparison with the case of regular flight. And here 
we use a gimmick of hypothe-sizing about possible 
location, taking K of most likely patches on a reference 
map (with respect to L past stored views from the 
camera), and comparing the next set of M consecutive 
images from camera with crops form the reference  
map – Figure 24.

Figure 21. Flying over deep forest



SYSTEM ANALYSIS                  13

1, 2025                 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Figure 22. Path finding with respect to richness of navigation relevant deep features

Figure 23. Flying over a featureless road

If an image from the camera doesn’t correspond to 
a hypothesized future image, the hypnosis is discarded. 
In this case navigation process relies on accumulation, 
unlike single shot template matching used in a normal 
mode. The number of tracked hypotheses depends on 
computational capacity of an onboard system. Dur-ing 
hypothesis checking, if a new terrain image provides a 
better matching score than currently tracked locations, 
the least confident hypothesis is discarded and a new one 
is started to be tracked.

In case when finding relevant features for 
navigation is impossible (the aforementioned process 
of hypothesizing didn’t provide results with enough 
confidence during J iterations), like when we moved 
from the forest, without elements of a distinctive border 
line, to the field, we have to address the entropy reference 
map (Figure 22). If the next waypoint is closer than the 
distance D, and it has enough features for navigation 
in its vicinity we continue moving. Else we must find 
on a reference map a closest big enough area with rich 
features and add an auxiliary waypoint in the center of it 
just for the sake of navigation. Being there, we determine 
the location and continue moving towards the desirable 
destination. In the real life it corresponds to the case when 
moving from the forest to the field we know that there is 
a nearby settlement to the west and we move there.

The advantage of template matching approach is 
the ability to learn different type of terrain transformation, 
utilizing existing open datasets, like pre and post disaster 
imagery [19] which is especially relevant for military 
UAV’s – Figure 25.

The important point for onboard systems is 
computational requirements of any suggested approach. 
Template matching doesn’t require frequent iterations of 
locating. It’s only necessary that a UAV won’t fly outside 
the area of search on a patch of the reference map. In 
a simulated environment, using NVIDIA GeForce RTX 
2080 SUPER (compute capability 7.5), flying altitude 
500 meters, onboard camera reso-lution of 512x512 and 
a patch of the reference map for searching of 1024x1024, 
a single iteration of navigation takes about 0.5 sec and 
provides speed of a UAV up to 75 meters per second, 
because otherwise a UAV leaves the search area of a 
reference map. It means that onboard CUDA-enabled 
products such as Jetson Nano (compute capability 
5.3), Jetson TX2 (compute capability 6.2), Jetson Orin 
Nano (compute capability 8.7) or even Raspberry Pi 
6 can perform such a task with sufficient for UAVs 
speed. In terms of RAM consumption 4 GB is enough 
only for navigation, but for when a UAV also performs 
object detection during flight, using a costumed trained 
YOLOv5, it requires 8 GB.



Figure 25. Pre and post disaster dataset [19]

The entire territory of the Republic of Belarus 
and its adjacent area with a scale sufficient for navigation 
from high altitude (about 1 km) requires approximately 
500 GB of storage which is apt for a modern M.2 SSD 
situated onboard. More detailed map of Minsk city with 
its outskirts requires 20 GB.

Conclusions, alternative solutions and future 
work

This work relies on the concrescence of strong 
points from two approaches. Deep feature template 
matching provides semantic understanding, agnostic to 
domain specific transformation caused by discrepancy in 
angles of observation, time of year, weather, vegetation 
and lighting conditions. Visual odometry allows keeping 
track of observed features on land and performing shifting 
of the reference map in order to stick to that again when 
the observed terrain has enough features.

Within the framework of conducted research 
it’s necessary to mention solutions that were tested but 
haven’t worked well.

In simulation navigation can also be performed 
by usage of the same point (line) based matcher (like 
GlueStick), that has been used for VO. Location and the 
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Figure 24. Hypothesizing over potential locations
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shifting vector for the reference map are determined ba-
sed on trigonometry using camera’s obliquity – Figure 26.

But, as that’s been mentioned, it demonstrated 
poor results with real camera feed due to inability 
to handle the situation with discrepancy in angles of 
observation.

An approach with predicting a bounding box 
that frames a camera view onto the reference map in 

a YOLO-like manner was also tried but was proved  
to be not efficient in terms of precision.

Several solutions represent relevance to 
the current work in terms of possible future usage. 
Unsupervised learning of visual features by 
contrasting cluster assignments [20] may be used  
for pretraining a backbone on a set of terrain images 
of different scales.

Figure 26. Usage of GlueStick in simulation

On a low altitude, flying through a city, a point 
cloud can be built from a depth map that can be predicted 
even from a monocular camera by open solutions [21].  
It then allows performing counter matching with 
segmented street view. An example of visual based 
SLAM in city is described in [22] – Figure 27.

A good solution in terms of not going astray 
during the navigation process is to use existing open 
source projects for lane (road) detection [23] to stick to 
a particular road and recognize road junctions during 
the flight, matching them with the reference map – 
Figure 28.

In addition to it, the suggested in this paper 
approach can also be further modified. Calculation of a 
shifting vector based on VO, in case when we don’t have 

enough features to perform template matching, can be 
performed with respect to some terrain features inferred 
by a neural network, in order to improve precision. 
Points, tracked from tree tops over the forest due to 
their closeness to a UAV will give a different shifting 
magnitude in comparison with points from a filed when 
a UAV flies the same distance. In this case must we 
collect real data with known positioning and train a 
neural network based on the value of odometry distance 
and actual distance that will correct the magnitude of a 
shifting vector based on pictures of terrain it observes. 
For improving VO a UAV can also have some onboard 
inertial navigation system and a network will perform 
sensor fusion in order to determine a resultant shifting 
vector.
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Figure 27. Visual-based SLAM in the city [22]

Figure 28. Line detection process [23]

For the “looking around” procedure the search for 
patches of the reference map that match a camera view 
(for hypothesizing over potential locations) is performed 
just by grid search over a potential area of the reference 
map. A more efficient way is to extract deep features in 
advance and organize a hash table for performing a quick 
lookup based on similarity, using solutions like fuzzy 
hashing [24]. 

A more intuitive way of navigating for a human 
being would be to look around with oblique view (like 
on Figure 26) and consider all the observable features, 
not only the view right from above perpendicular to the 
surface.  It requires for a neural network to understand the 
transformation between a 2d satellite map and a 3d view 
of a terrain given under certain angle and form certain 
height. For such a task it can be trained using existing 3d 
terrains in solutions like Cesium [25] – Figure 29.

Figure 29. Cesium platform for Unity 3d [25]

Combination of looking around with different 
obliquity of a camera, looking perpendicular to  
the surface, accumulating features and performing 
maneuvers in order to alleviate uncertainty in under-
standing the position is the area of further research.
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РУЛЬКО Е.В.

НАВИГАЦИЯ ПО СНИМКАМ МЕСТНОСТИ НА ОСНОВЕ СОПОСТАВЛЕНИЯ ГЛУБОКИХ 
ПРИЗНАКОВ И ВИЗУАЛЬНОЙ ОДОМЕТРИИ

Военная академия Республики Беларусь
г. Минск, Республика Беларусь

Основной проблемой для систем навигации по снимкам местности является несоответствие  
визуальных признаков между фрагментом опорной картой и изображением с борта БПЛА.  
Снимки могут быть сделаны в различное время года, в различную погоду, с различными растительным 
покровом, условиями освещения и под различными углами обзора относительно плоскости земной 
поверхности. Данная работа предлагает использование сопоставления глубоких признаков, извлеченных 
в рамках неконтролируемого обучения с использованием триплет-ошибки. Это обеспечивает понимание 
семантики изображений, не зависящей от трансформаций местности. В рамах полёта над местностью 
с недостаточным количеством визуальных признаков для навигации (лес, поле), в работе предложено 
дополнительное использование визуальной одометрии с процедурой привязывания к опорной карте  
после получения достаточного количества признаков, с построением гипотез относительно  
местоположения. Извлечение глубоких признаков натренированной сетью из опорной карты  
и применение к ним фильтра энтропии позволяет планировать маршруты полёта над местностью, 
обладающей достаточным разнообразием признаков, необходимых для навигации.

Ключевые слова: навигация по снимкам местности, глубокие признаки, машинное обучение, визуальная 
одометрия, БПЛА
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