4 CUCTEMHBIN AHAJIN3

YDC 004
DOI: 10.21122/2309-4923-2025-1-4-19

RULKOE.V.

TERRAIN RELATIVE NAVIGATION BASED ON DEEP FEATURE TEMPLATE
MATCH-ING AND VISUAL ODOMETRY

Military Academy of the Republic of Belarus
Minsk, Republic of Belarus

The main hurdle for terrain relative navigation systems is the incongruity of visual features between a patch
of a satellite reference map and a view from an onboard UAV camera. Images are taken during different time of year,
under different weather, vegetation and lighting conditions, with different angles of observation. This work propos-
es the usage of deep feature template matching, where features are extracted during unsupervised training using
a tri-plet loss. It provides semantic understanding, agnostic to terrain transformations. In order to overcome strug-
gling to navigate over featureless terrains, the work proposes additional usage of visual odometry with the proce-
dure of stick-ing to the map after encountering enough features, with the procedure of hypothesizing over possible
locations. Pass-ing a fragment of the reference map through the trained feature extractor, applying an entropy filter
and then a path-finding algorithm allows planning a flying path over areas rich of features relevant for navigation.

Keywords: terrain relative navigation, template matching, triplet loss, deep learning, visual odometry, UAV

Introduction

Current proliferation and accessibility of open
digital maps that include satellite images in confluence
with a plethora of open source deep learning based
solutions of performing feature extraction, visual
odometry (VO) and simulta-neous localization and
mapping (SLAM) is the impetus of developing manifold
terrain relative navigation systems (TRN).

The image of a terrain fragment on a map usually
has been taken during different time of year, under
different weather, vegetation and lighting conditions, and
with different angles of observation in comparison with a
current camera view. Some objects on maps like spots of
light, reflected from iridescent objects, or cars on roads
must be discarded from being used as landmarks and
flying over a field, forest or some snowy surface may not
present enough deep features to stick to a reference map.
All this rep-resent a palpable hurdle to existing TRNSs.
To address these issues this work proposes the us-age of
deep feature template matching, where the features are
extracted during unsupervised training using a triplet loss
over different terrain patches. This allows performing
matching of ter-rain patches based on their semantic
content with the imparted knowledge of a neural net-
work about possible transformations of terrains over
different time and conditions, including understanding of
features that should be dis-carded. Combination of this
solution with deep learning based VO allows performing
navigation when a terrain doesn’t have enough deep fea-
tures to stick to the reference map.

Additionally, having a model that is ca-pable of
extracting deep features relative for navigation over a
satellite map allows applying an entropy filter to those
extracted features and to consequently determine routes
of'a UAV with enough visual features to stick to.

Related Work

Among multifarious solutions of TRN systems,
several works represent especial interest in terms of using
deep learning for extracting weather, time of year, lightning
conditions ag-nostic features. An approach based on
autoen-coder architecture is presented in [1]. During the
first stage of training the network takes a tile of a satellite
image (ortho tile) and reconstructs a corresponding tile of
map’s abstract layer. The second stage of training implies
the usage of given latent space to reconstruct the original
tile acquired from custom video — Figure 1.

The process of locating involves rotating, scaling
images and cropping 5 tiles for a single iteration of
template matching — Figure 2.

As the demonstrated experiments indi-cate, the
approach works well when flying over a terrain that has
rich feature representation on a correspondent abstract
map, like a city land-scape, because the neural network
learns how to produce an abstract map tile from a satellite
one. It seems pretty difficult for this approach to move
over some open area of fields which will be represented
as just featureless white space.

A seasonally invariant deep transform for visual
terrain relative navigation is presented in [2]. As the
name suggest it involves targeted use of deep learning
within an image transform architecture, which converts
seasonal imagery to a stable, invariant domain that can
be used by conventional algorithms (like homography
via feature matching from OpenCV) without modi-
fication. During training, a U-Net like image transform
model is exposed to matching cross-seasonal image pairs
in twinned fashion — a single transform is identically
shared between two parallel streams, with registration
performance between the outputs used as a loss function
to optimize the transform weights — Figure 3.

CUCTEMHBIA AHAJIN3 U TPAUKJIATHASI THOOPMATHUKA

1,2025

SYSTEM ANALYSIS S

Figure 1. Mechanism of getting latent space [1]

During the inference stage the reference map
image and a camera view image are subjected to the
learned transformation and the resultant images allow
using homography via feature matching in an ordinary
way — Figure 4.

According to the work [2] this approach
demonstrates superior performance under extreme
seasonal changes while also being easy to train and
highly generalizable. As the result of preprocessing,
images of summer and spring mountain terrain
will be transformed into pictures of ridges -

Figure 2: Navigation process [1] Figure 5.

Feature-based model training

—
a
— N

t Lieat

Figure 4. Inference preprocessing and matching [2]

1, 2025 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIU3

Figure 5. Season agnostic transformation [3]

However, the open example of the approach usage
demonstrates that it requires relatively high altitude
to get enough landmarks like buildings or mountain
terrain features and due to the incongruity in angles of
observation on satellite maps some objects, especially
high buildings, appear different to a degree that their
outlines won’t match while using conventional feature
matching, without taking into account semantic context —
Figure 6.

It’s also necessary to mention that the major
providers of open maps such as Google, Bing or Yandex
usually present a terrain over the Republic of Belarus
during seasons without extensive snow coverage,
which represent some hurdle for the aforementioned
approach [2] and the approach that will be presented
in the current work.

But it can be surmountable by using for training
existing terrains from other places of the world or by
different map providers, which contain examples of
extensive pieces of land with snow coverage that can also
be found on satellite maps without it.

Modern TRN systems also extensively use
existing open source keypoint matchers. The advantage
of deep learning based matchers such as LoFTR
(Local Feature Matching with Transformers) [4] over
ordinary keypoint detectors such as OpenCV ORB [5]
was presented in [6] — Figure 7. Other algorithms from
OpenCV such as SIFT, SURF or BRIEF don’t seem to
work much better, whereas there is a plethora of opens
source deep learning based matchers, differing in year
of inception, accuracy and performance, such as:
KP2D (Neural Outlier Rejection for Self-Supervised
Keypoint Learning) [7], Super-Glue (Graph Neural
Network combined with an Optimal Matching layer) [8],
EfficientLoFTR [9], LightGlue [10] and other. Some
of solutions are just modified and refined versions of
previous ones. During the research conducted within the
framework of this work, the majority of solutions were
tested in practice, relatively to the TRN task.

Figure 6. The same place in Minsk city from Bing (above)
and Google (below) providers

Especially apt for that in terms of performance
and accuracy was GlueStick [11], which provides robust
image matching by sticking points and lines together.
Lines are especially important while using manmade
landmarks — Figure 8a. At the same time it also extracts
point based features — Figure 8. This allows feature
matching (Figure 10c) and subsequent homography
alignment (Figure 10d).

CHUCTEMHbII AHAJIM3 U IIPUKJIAJTHASI UHOOPMATHKA

1, 2025

SYSTEM ANALYSIS

ORB

LoFTR

W Figure2

AED Q=L e e 1y

"o
i

W Figure3

M= ARE

o Figures

sleiHaE s

Figure 8. Matching using GlueStick [11]

the wusage of GlueStick per se

However,
for matching two patches of terrain from different

sources wasn’t so robust (Figure 9a), whereas
it has demonstrated relatively high precision for the

purpose of VO, when it’s necessary to keep track
of the same features viewed from different
angles over time due to the process of flying (Figu-
re 9b).

Figure 9. Usage of GlueStick for TRN per se (@) and over the same terrain with different angles (b)

1, 2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIN3

Proposed approach

The suggested approach of this work is based
on deep feature template matching. There are existing
solutions of that, like robust tem-plate matching using
scale-adaptive deep convo-lutional features [12] or
QATM (quality-aware template matching for deep
learning) [13]. In [12] scale-adaptive deep convolutional
feature vectors are extracted from the template and the

Adaptive feature selection

|
Template T | I

input image via the pretrained VGG-Net — Figure 10.
Each layer represents a different level of deep features
of the actual image contents. Normalized cross-
correlation (NCC) is used to measure the distance
between features of the template and the image to detect
the target image patch. Nonetheless, existing pretrained
networks are not necessarily apt for extracting features
that are relevant for comparing two images of the same
terrain under different conditions.

NN ‘ > NCC
b b —
m VGG-net Image feature map M

Image |

Figure 10. Scale-adaptive deep convolutional feature extraction based template matching [12]

Usually neural networks that are wused as
backbones for computer vision tasks are pretrained on
datasets like ImageNet [14]. It means that it can be used
for finding a cat on a picture, using textures and high
level features such as eyes, nose, ears and whiskers,
but will struggle with finding a specific patch of
terrain, because of the necessity to understand domain
specific transformations caused by snow or vegetation
coverage and discrepancy between seasons and lightning
conditions. It’s similar to the face recognition task, when
we need to build deep feature space in which the same
face has the same features [15]. Additionally it may allow
moving along that space to perform a smooth transition
from one face to another. For extracting such deep
features this paper suggests using a triplet loss [15] —
Figure 11.

Negative m
Anchor LEARNING
Negative
Anchor .
Positive Positive

Figure 11. Triplet loss [15]

The main idea behind the triplet loss is to minimize
the distance between an anchor (patch of particular arca
from source A) and a positive (patch of the same area
from source B), both of which have the same identity
(but may differ in terms season, angles of observation
and so on) and at the same time to maximize the
distance between the anchor and a negative of a different

identity (random patch of a different area either from
source A or B) — Figure 12.

Positive

Anchor Negative

Figure 12. Examples of triplets for rotation insensitive training

Performing matching, the orientation of terrain
fragments must be the same. Giving the possible
inaccuracy of an onboard compass, the network is also
train to be agnostic to discrepancy in orientation within the
range of 20 degrees. It’s achieved through augmentation
in form of random rotation of positive image within that
range during training (Figure 12 positive).

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

1,2025

SYSTEM ANALYSIS

9

For making the network agnostic to height un-
certainty, images can also be randomly scaled. In order
to get a rich feature space, images cropped from Google
maps zoom level 13 to 20. The network’s architecture is
a modified version of ResNet50 — Figure 13.

Triplet loss for the training process is described
like this [15]:

L= [G = F DI, PG = FmIE + o L)

where f(x)— function representing feature extraction;
X, X, X, = anchor, positive and negative samples;
N — batch size; o — bias.

Usage of Weights & Biases developer
platform [16] proved to be effective for search of optimal

Input image
(3,512,512)

ResNet50 backbone

hyperparameters such as: learning rate, batch size,
dropout values, configurations of addons to the backbone
and even pretrained backbone itself.

In case of not using an onboard compass for
getting the rotation angle (may be connected with
natural or artificially induced magnetic anomalies) the
orientation must be determined only by comparing an
image of observed terrain and the reference satellite
map. For that a different approach to composing images
for a triplet loss has been proposed. An image of the same
area from a different source but with the same orientation
is used as a positive sample, whereas an image of the
same area, from the same source but rotated within 15 to
45 degrees is used as a negative one — Figure 14.

Output feature vector
(2048, 16, 16)

I

i

Conv 1x1 Dropout Conv 1x1

Conv 1x1

(2048, 4096) (4096, 4096) (0.1) (4096,2048)

Figure 13. Feature extractor architecture

Positive

Anchor Negative

Figure 14. Examples of triplets for rotation sensitive training

A single multi-head network may be used for
both purposes: navigation and rotation correction —
Figure 15.

The training process in this case involves
two stages: training of the rotation insensitive head
together with the ResNet50 backbone and then freezing
the backbone and training of the rotation sensitive
head. Usage of a single net-work is expedient due
to computational limitations of onboard hardware.

Otherwise two separate networks (Figure 13) each
for rotation sensitive and rotation insensitive feature
extraction for navigation and angle evaluation
respectively have proven to be better.

The actual process of navigation implies finding
the location of a smaller image form camera on a rotated
bigger image of the reference terrain view and shifting
that reference view according to the flight in order not to
move outside an area of search — Figure 16.

The reference image 1is acquired using
preliminarily loaded onboard base of tiles, with the scale
of map provider and ancillary scaling that correspond
to the current height of flying in order to ensure scale
congruity between images.

Extracted deep features allow performing quality
aware matching based on image semantics. Usage of
a convolutional network allows working with images
of any existing standard resolutions and respective
reference images. For two images on Figure 16 we’ll get
two vectors of shape (2048, 32, 32) and (2048, 16, 16),
so the task is boiled down to locate a patch of 16x16 on a
patch of 32x32 — Figure 17.

Matching is performed by sliding an im-age
view feature vector over a bigger reference image
feature vector within the plane of view (a window of
16x16 over one of 32x32) and calculating Euclidean
distance between an image feature vector and a
corresponding crop from the reference feature vector.
A position with minimal distance will give the best
matching.

1, 2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

10

CUCTEMHBIN AHAJIN3

Rotation insensitive head

Input image
(3, 512, 512)
Last Boitleneck Qutput feature vector
ResJ.Vetb'O backbone Residual Block: (1043 16. 16)
without the last 3x:
Bottleneck Residual éf? ; ;g
5
Block Ix1; 2048

Conv 1xl Conv 1x1 Dropout Conv 1x1
(2048, 4096)(2048, 4096) (0.1) (4096, 2048)

Rotation sensitive head

Last Bottleneck Output feature vector
Residual Block: (2048 16, 16)
3x:

Ixi; 512

3x3; 512

1x1; 2048

Conv1xl Conv1xl
(2048, 4096) (4096, 2048)

Figure 15. Two output head feature extractor

T AN TSR A 5O WL

Reference map fragment 1024x1024

Figure 16. Task of locating camera image

Figure 17. Task of locating feature vector

The drawback of this approach is that we are
not determining exact coordinates of our location. The
coordinates of the reference image patch are known and
we are locating relatively to it with the discretization of
32 pixels (image of 1024x1024 is convolved to 32x32).
But that uncertainty is not accumulated over the flight.
It’s important to just properly shift the reference image
according to UAV’s movement.

Auxiliary correction of the orientation angle
by means of image comparing is performed after the
iteration of location determining. In this case a current

CUCTEMHBINA AHAJIN3 U TIPUKJIATHASI THOOPMATHUKA 1, 2025

SYSTEM ANALYSIS

11

camera view is compared with the set of rotated crops
from the ref-erence source turned within the range
of -10 to +10 degrees — Figure 18.

Rotated crops

Camera view

In a similar way, for that we extract deep
features by a rotation sensitive head or a separate
network and get the angle which corresponds to a crop
image that provides a minimum distance in terms of
feature space.

A complex of programs, connected via network,
was created for experimental study of different facets
of the suggested approach and proving their feasibility.
A Unity 3d environment simulates flying over a terrain
with different weather and lightning — Figure 19.

Defining a desirable route to fly is performed by
setting a set of waypoints onto a map. During the flight
time a model UAV determines its location by video
feed and analyzes its necessity to turn when it’s in the
vicinity of the next waypoint according to the route.
That procedure is performed with a discretization that
depends on UAV speed, height, view angle of a camera
and reference image size in order not to fly outside the
search area — Figure 20.

However, wusage of template matching
is struggling with flying over the deep forest, leading the
determined location astray from a UAVs real position,
moving forward towards a consec-utive waypoint —
Figure 21.

Figure 19. Simulation environment

Initially, flying over roads, patch of forest
crossed with roads, border of forest and shrubs, it could
determine its location. Moving deeper in the forest
it had failed. Like for a human, hovering on a balloon
over featureless forest or desert, navigation relying
only on a sight from above would be almost
intractable.

One way to overcome that is to pass a big fragment
of the reference map through the network, extract deep
features and apply an entropy filter [17] to that. Then set
start and end points on a map and use one of the path
finding algorithms (like A* [18]) using only areas with
high entropy level in terms of deep features, relevant for
navigation — Figure 22.

1,2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

12

CUCTEMHBIN AHAJIN3

Camera view from
simulation

Figure 20. Simulation environment

Another way to address the problem of flight
over terrain with poor features or with low altitude is
to use VO as ancillary mechanism. There are several
cases that illustrate the concrescence of the approaches.
In case of strug-gling to perform template matching
it doesn’t provide enough confidence, expressed in
terms of Euclidean distance for one particular template
location over an average value. It’s especially evident
in cases of flying along the roads with low amount of
distinctive features on the side-lines, because all the
crops taking along the road will look relatively the
same — Figure 23.

If such a situation with low maximum value
over the average one exists, the reference map is shifted
simply by a vector given by using VO between two
consecutive images, like on Figure 9b. If we encounter
an image that through template matching provides high
enough confidence during N iterations — we align the
reference map according to that. Number N is chosen
in order not to move outside the search are due to
possible VO errors. If we continue flying using VO (and
shifting the reference map according to it) more than
N iterations — we start analyzing Euclidean distance
between consecutive terrain images. If distance exceeds
a threshold — we perform a “looking around” procedure
by soaring if necessary for getting a better vantage point

and increasing the amount of features for performing
template search over bigger space of the reference map
in comparison with the case of regular flight. And here
we use a gimmick of hypothe-sizing about possible
location, taking K of most likely patches on a reference
map (with respect to L past stored views from the
camera), and comparing the next set of M consecutive
images from camera with crops form the reference
map — Figure 24.

Figure 21. Flying over deep forest

CUCTEMHBINA AHAJIN3 U TIPUKJIATHASI THOOPMATHUKA

1,2025

SYSTEM ANALYSIS 13
Destination
¥ l
(v/32, ¥/32)
NS R
Entropy A* Set of
Feature extractor | —> Sfilter algorithm waypoints

Figure 23. Flying over a featureless road

If an image from the camera doesn’t correspond to
a hypothesized future image, the hypnosis is discarded.
In this case navigation process relies on accumulation,
unlike single shot template matching used in a normal
mode. The number of tracked hypotheses depends on
computational capacity of an onboard system. Dur-ing
hypothesis checking, if a new terrain image provides a
better matching score than currently tracked locations,
the least confident hypothesis is discarded and a new one
is started to be tracked.

In case when finding relevant features for
navigation is impossible (the aforementioned process
of hypothesizing didn’t provide results with enough
confidence during J iterations), like when we moved
from the forest, without elements of a distinctive border
line, to the field, we have to address the entropy reference
map (Figure 22). If the next waypoint is closer than the
distance D, and it has enough features for navigation
in its vicinity we continue moving. Else we must find
on a reference map a closest big enough area with rich
features and add an auxiliary waypoint in the center of it
just for the sake of navigation. Being there, we determine
the location and continue moving towards the desirable
destination. In the real life it corresponds to the case when
moving from the forest to the field we know that there is
a nearby settlement to the west and we move there.

The advantage of template matching approach is
the ability to learn different type of terrain transformation,
utilizing existing open datasets, like pre and post disaster
imagery [19] which is especially relevant for military
UAV’s — Figure 25.

The important point for onboard systems is
computational requirements of any suggested approach.
Template matching doesn’t require frequent iterations of
locating. It’s only necessary that a UAV won’t fly outside
the area of search on a patch of the reference map. In
a simulated environment, using NVIDIA GeForce RTX
2080 SUPER (compute capability 7.5), flying altitude
500 meters, onboard camera reso-lution of 512x512 and
a patch of the reference map for searching of 1024x1024,
a single iteration of navigation takes about 0.5 sec and
provides speed of a UAV up to 75 meters per second,
because otherwise a UAV leaves the search area of a
reference map. It means that onboard CUDA-enabled
products such as Jetson Nano (compute capability
5.3), Jetson TX2 (compute capability 6.2), Jetson Orin
Nano (compute capability 8.7) or even Raspberry Pi
6 can perform such a task with sufficient for UAVs
speed. In terms of RAM consumption 4 GB is enough
only for navigation, but for when a UAV also performs
object detection during flight, using a costumed trained
YOLOVS, it requires 8 GB.

1,2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

14

CUCTEMHBIN AHAJIN3

Hypothesis 1,

discarded on
e step 2
-

-

gl Hypothesis 2,
accepted

What we should
see during future
flight if we take a
hypothesis

Hypothesis 3, |
discarded on

Consecutive
images from the
onboard camera

Crossing the railroad
leads to discrepancy
between prior and
posterior images in terms
of deep features, that in
turn leads to initiating the
“looking around”
procedure

Figure 24. Hypothesizing over potential locations

Figure 25. Pre and post disaster dataset [19]

The entire territory of the Republic of Belarus
and its adjacent area with a scale sufficient for navigation
from high altitude (about 1 km) requires approximately
500 GB of storage which is apt for a modern M.2 SSD
situated onboard. More detailed map of Minsk city with
its outskirts requires 20 GB.

Conclusions, alternative solutions and future
work

This work relies on the concrescence of strong
points from two approaches. Deep feature template
matching provides semantic understanding, agnostic to
domain specific transformation caused by discrepancy in
angles of observation, time of year, weather, vegetation
and lighting conditions. Visual odometry allows keeping
track of observed features on land and performing shifting
of the reference map in order to stick to that again when
the observed terrain has enough features.

Within the framework of conducted research
it’s necessary to mention solutions that were tested but
haven’t worked well.

In simulation navigation can also be performed
by usage of the same point (line) based matcher (like
GlueStick), that has been used for VO. Location and the

CHUCTEMHBIA AHAJIN3 U TIPAKJIAJTHASI THOOPMATHKA

1,2025

SYSTEM ANALYSIS

15

shifting vector for the reference map are determined ba-
sed on trigonometry using camera’s obliquity — Figure 26.

But, as that’s been mentioned, it demonstrated
poor results with real camera feed due to inability
to handle the situation with discrepancy in angles of
observation.

An approach with predicting a bounding box
that frames a camera view onto the reference map in

a YOLO-like manner was also tried but was proved
to be not efficient in terms of precision.

Several solutions represent relevance to
the current work in terms of possible future usage.
Unsupervised learning of visual features by
contrasting cluster assignments [20] may be used
for pretraining a backbone on a set of terrain images
of different scales.

Figure 26. Usage of GlueStick in simulation

On a low altitude, flying through a city, a point
cloud can be built from a depth map that can be predicted
even from a monocular camera by open solutions [21].
It then allows performing counter matching with
segmented street view. An example of visual based
SLAM in city is described in [22] — Figure 27.

A good solution in terms of not going astray
during the navigation process is to use existing open
source projects for lane (road) detection [23] to stick to
a particular road and recognize road junctions during
the flight, matching them with the reference map —
Figure 28.

In addition to it, the suggested in this paper
approach can also be further modified. Calculation of a
shifting vector based on VO, in case when we don’t have

enough features to perform template matching, can be
performed with respect to some terrain features inferred
by a neural network, in order to improve precision.
Points, tracked from tree tops over the forest due to
their closeness to a UAV will give a different shifting
magnitude in comparison with points from a filed when
a UAV flies the same distance. In this case must we
collect real data with known positioning and train a
neural network based on the value of odometry distance
and actual distance that will correct the magnitude of a
shifting vector based on pictures of terrain it observes.
For improving VO a UAV can also have some onboard
inertial navigation system and a network will perform
sensor fusion in order to determine a resultant shifting
vector.

1,2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

16 CHUCTEMHBIN AHAJIN3

For the “looking around” procedure the search for
patches of the reference map that match a camera view
(for hypothesizing over potential locations) is performed
just by grid search over a potential area of the reference
map. A more efficient way is to extract deep features in
advance and organize a hash table for performing a quick
lookup based on similarity, using solutions like fuzzy
hashing [24].

: _ 3 A more intuitive way of navigating for a human
" 10em accuracy position + point-cloud map of environment @l being would be to look around with oblique view (like
Snbyvin seasors, e liogs arGPs] ° on Figure 26) and consider all the observable features,
not only the view right from above perpendicular to the
surface. Itrequires for a neural network to understand the
transformation between a 2d satellite map and a 3d view
of a terrain given under certain angle and form certain
height. For such a task it can be trained using existing 3d
terrains in solutions like Cesium [25] — Figure 29.

Figure 29. Cesium platform for Unity 3d [25]

Combination of looking around with different
obliquity of a camera, looking perpendicular to
the surface, accumulating features and performing
Figure 28. Line detection process [23] maneuvers in order to alleviate uncertainty in under-
standing the position is the area of further research.

REFERENCES

1. Image Transformation Learning for Drone Navigation without GPS: [Electronic resource] // HuCE — cpvrLab.
URL: https://www.youtube.com/watch?v=5JEFe2 [4So. (Date of ac-cess: 23/10/2024).

2. Anthony T. Fragoso et al. A seasonally invariant deep transform for visual terrain-relative navigation. Science robotics.
2021. Vol. 6, Ne 55.

3. Autonomous Navigation with Improved Visual Terrain Recognition: [Electronic resource] // Caltech. URL: https://
www.youtube.com/watch?v=U5Kr0YI3sec. (Date of access: 23/10/2024).

4. Jiaming Sun et al. LoFTR: Detector-Free Local Feature Matching with Transformers. 2021. arXiv: 2104.00680.

5. ORB (Oriented FAST and Rotated BRIEF): [Electronic resource] // OpenCV. URL: https://docs.opencv.org/4.x/d1/
d89/tutorial py orb.html. (Date of access: 23/10/2024).

6. ORB vs ML-aided Visual TRN: [Electronic resource] // KEF Robotics. URL: https://www.youtube.com/(@
kefrobotics6924. (Date of access: 12/01/2024).

7. Jiexiong Tang et al. Neural Outlier Rejection for Self-Supervised Keypoint Learning. 2019. arXiv: 1912.10615.

8. Paul-Edouard Sarlin et al. SuperGlue: Learning Feature Matching with Graph Neural Networks. 2020. arXiv:
1911.11763.

CUCTEMHBINA AHAJIN3 U TPUKJIATHASI THOOPMATHUKA 1, 2025

SYSTEM ANALYSIS 17

9. Yifan Wang et al. Efficient LoFTR: Semi-Dense Local Feature Matching with Sparse-Like Speed. 2024. arXiv:
2403.04765.

10. Philipp Lindenberger et al. LightGlue: Local Feature Matching at Light Speed. 2023. arXiv: 2306.13643.

11. Rémi Pautrat et al. GlueStick: Robust Image Matching by Sticking Points and Lines Together. 2023. arXiv:
2304.02008.

12. Jonghee Kim et al. Robust template matching using scale-adaptive deep convolutional features. APSIPA Annual
Summit and Conference. 2017.

13. Jiaxin Cheng et al. QATM: Quality-Aware Template Matching For Deep Learning. 2019. arXiv: 1903.07254.

14. ImageNet: [Electronic resource] / URL: https://www.image-net.org. (Date of access: 23/10/2024).

15. Schroff et al. FaceNet: A unified embedding for face recognition and clustering. 2015. arXiv: 1503.03832.

16. Weights & Biases: [Electronic resource] / URL: https://wandb.ai/site. (Date of access: 23/10/2024).

17. Examples. Filtering and restoration. Entropy: [Electronic resource] // Scikit-image. https://scikit-image.org/docs/
stable/auto_examples/filters/plot_entropy.html. (Date of access: 23/10/2024).

18. A* Search Algorithm: [Electronic resource| // https://www.geeksforgeeks.org/a-search-algorithm. (Date of access:
23/10/2024).

19. Annotated high-resolution satellite imagery for building damage assessment: [Electronic resource] / xBD Dataset.
URL: https://xview2.org/dataset. (Date of access: 23/10/2024).

20. Mathilde Caron et al. Unsupervised Learning of Visual Features by Contrasting Cluster Assignments. 2021. arXiv:
2006.09882.

21. Lihe Yang et al. Depth Anything V2. 2024. arXiv: 2406.09414.

22. Dioram Visual Navigation(based on Dioram SLAM One) point-cloud mapping in a city scale: [Electronic
resource] // Dioram: Computer Vision, Machine Learning, SLAM. URL: https://www.youtube.com/watch?v=DwAT46MdyXk.
(Date of access: 23/10/2024).

23. Awesome-lane-detection: [Electronic resource] // Github.com. URL: https://github.com/amusi/awesome-lane-
detection?tab=readme-ov-file#2023. (Date of access: 23/10/2024).

24. J. Oliver, J. Hagen. Designing the Elements of a Fuzzy Hashing Scheme. Science robotics. 2021 IEEE 19" International
Conference on Embedded and Ubiquitous Computing (EUC), Shenyang, China, 2021, pp. 1-6.

25. Real-World 3D Geospatial Capability for Unity: [Electronic resource] / Cesium.com. URL: https://cesium.com/
platform/cesium-for-unity. (Date of access: 23/10/2024).

JIUTEPATYPA

1. U3ydyenune TpaHchopManuii u300pazkeHuil JJIsi HABUTalMU OeCHHJIOTHBIX JleTaTeJbHbIX annaparos 6e3 GPS
[DnexkTponHsIii ToKyMeHT]. — Pexxum goctyna: https:/ www.youtube.com/watch?v=5JEFe2 1.4So (nata obpaienus 23.10.2024).

2. Anthony T. Fragoso u ap. MHBapuantHoe Kk ce30HaM IIy0OKoe mpeoOpa3oBaHue ISl HABUTALMU 110 MECTHOCTH. //
Hayxa po6ororexnuka. —2021. — Ne 55.

3. ABTOHOMHAasI HABUT AU C YJIy4leHHbIM BH3YaJbHBIM PACIO3HABAHHEM MECTHOCTH [DEKTPOHHBIN JOKYMEHT]. —
Pexxum nocrtyma: https://www.youtube.com/watch?v=U5Kr0Y13sec (nara obpamenus 23.10.2024).

4. Jiaming Sun u ap. LoFTR: ConocrapneHue T0KaabHBIX PU3HAKOB ¢ TpaHCHOpMepaMu 0e3 JeTEKTOPOB [DIEKTPOH-
HBII TOKyMeHT]. — Pexxum moctyma: https://arxiv.org/abs/2104.00680 (mata obpamenus 23.10.2024).

5. ORB (OpuenrupoBannsiii FAST noseprytsiit BRIEF) [Onexrponnsiit moxyment]. — Pesxum moctyma: https://docs.
opencv.org/4.x/d1/d89/tutorial _py orb.html (nara obpamenus 23.10.2024).

6. ORB B cpaBHeHHHU ¢ BU3ya/1bHOI HABUIaluell 0 MECTHOCTH C MCIIO0/Ib30BAHUEM MALIMHHOIO 00y4eHHs [Dnek-
TPOHHBIH JOKyMeHT]. — Pexxum noctyna: https://www.youtube.com/@kefrobotics6924 (nara oopamenus 23.10.2024).

7. Jiexiong Tang n nap. OtOpacsiBaHNe aHOMAJIBHBIX 3HAYCHUH JJAHHBIX Yepe3 HEHPOHHBIE CETH JUIsl CAMOKOHTPOIIHpYe-
MOTO O0yUCHHS KIFOUSBBIM TOUKaM [DNEKTPOHHBINA JOKyMeHT]. — Peskum moctyma: https://arxiv.org/abs/1912.10615 (nara obpa-
menust 23.10.2024).

8. Paul-Edouard Sarlin u np. CynyepKueii: M3y4enue comnocraBieHust IPU3HAKOB Yepe3 rpadoBbie HEWPOHHbBIE CETH
[DnexrponHbIit fOKyMeHT]. — Pexxum noctymna: https:/arxiv.org/abs/1911.11763 (nara obpamienus 23.10.2024).

9. Yifan Wang u ap. Dddexrusnbiii LoFTR: [Tony-moaHOCBsI3HOE CONOCTaBICHNE JTOKATBHBIX MIPU3HAKOB C Pa3psiKEeH-
HOU CKOPOCTBIO [DNEKTPOHHBIN TOKYMEHT]. — Pexxum moctyma: https:/arxiv.org/abs/2403.04765 (nata obpamenus 15.11.2024).

10. Philipp Lindenberger u ap. JlekruiiKieii: JlokaabHOE COMOCTAaBICHNE IPH3HAKOB CO CKOPOCTHIO CBETA [DIEKTPOH-
HBII TOKyMeHT]. — Pexxum moctyma: https://arxiv.org/abs/2306.13643 (nara obpammenus 23.10.2024).

11. Rémi Pautrat u ap. KneiiKapanmam: YeroiunBoe comocrapieHre H300paskeHU yepe3 COueTaHne TOUCK M JIMHHI
[OnexrponHsIit noKyMeHT]. — Pexxnm noctyma: https://arxiv.org/abs/2304.02008 (zara obpamenns 23.10.2024).

1, 2025 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

18 CUCTEMHBIN AHAJIN3

12. Jonghee Kim m ap. YcroifunBoe comocraBieHHe 10 MIa0JIOHAM C HCIIOIb30BaHME aJalTHPOBAHHBIX K MacmiTaly
n1y0okux cBEPTOYHBIX npu3HaKkoB. // APSIPA exeronnas BcTpeda u koHpepenims. — 2017.

13. Jiaxin Cheng u ap. QATM: ConocrapieHue 1o mabiioHam s TyOoKoro o0ydeH s ¢ TOHMMaHUEM KauecTBa [DJek-
TPOHHBIH TOKyMeHT]. — Pexxum noctyna: https://arxiv.org/abs/1903.07254 (nara oopamienus 23.10.2024).

14. ImageNet [DnexrpoHHblii nokyMeHT]. — Pexxum goctyma: URL: https://www.image-net.org (mara oOparieHns
23.10.2024).

15. Schroff u ap. FaceNet: yHuduuupoBanHoe npeacTaBieHue A1 PACHO3HABAHUS JIMII M KJIacTEpU3aluu [DIeKTPOH-
HBII TOKyMeHT]. — Pexxnm noctyma: https://arxiv.org/abs/1503.03832 (nara obpamenus 23.10.2024).

16. Weights & Biases [OnexTponHbIii mokymeHT]|. — Pexxum moctyma: URL: https://wandb.ai/site. (nara oOpameHus
23.10.2024).

17. Scikit-image. [Tpumepsr. @uasTpanust 1 BOCCTaHOBIEHHE. DHTPONHS [DIEKTPOHHBIN TOKYMEHT]. — PeskuM mocrtyma:
URL: https://scikit-image.org/docs/stable/auto_examples/filters/plot_entropy.html. (zata o6pamenus 23.10.2024).

18. A* aaropuT™ nmomucka [DIIeKTpoHHBIN fokyMeHT). — Pexxum noctyna: URL: https://www.geeksforgeeks.org/a-search-
algorithm. (nara obpamenus 23.10.2024).

19. PazMeuyeHHBbIe CIIyTHHKOBBIE CHUHMKH BBICOKOI0 pa3pelieHus 1/ OLeHKH pa3pylleHui 31aHuil [DJIeKTpOHHBIN
nokymeHT]. — Pexxum moctyna: URL: https:/xview2.org/dataset. (mara obpamienus 23.10.2024).

20. Mathilde Caron u ap. HekonTponupyemoe oOyueHne BU3yalbHbIM IPH3HAKaM UYepe3 KOHTPACTHbIE KIacTepHbIE Ha-
3HA4YeHHs [DNEKTPOHHBIN JOKYMEHT]. — Pexxum noctymna: https:/arxiv.org/abs/2006.09882 (nara obparuenus 23.10.2024).

21. Lihe Yang u ap. I'my6una vero yrogHo Bepcus 2 [DaeKTpoHHbINH goKyMeHT]. — Pexxum mocryma: https://arxiv.org/
abs/2406.09414 (nara obpamenns 23.10.2024).

22. Dioram Bu3yajbHasi HaBurauus (0asupymomasics Ha Dioram SLAM One) omnpeaesieHHe MecCTONOJIOKEHUS
yepe3 00/1aK0 TOYKe B MacmITadax ropoaa [DIeKTpOHHBIN AoKyMeHT). — Pexxum noctyma: URL: https://www.youtube.com/
watch?v=DwAT46MdyXk. (nara obpamenus 23.10.2024).

23. IIpeBOCXOTHBIN 1eTeKTOP JIMHMIT [DNeKTpoHHBIH NoKyMeHT]. — Pesxum moctyma: URL: https://github.com/amusi/
awesome-lane-detection?tab=readme-ov-file#2023. (nara obpamenus 23.10.2024).

24. J. Oliver. Pa3pa0boTka »1eMeHTOB cXeMbl HeueTkoro xemmuposanus. / J. Oliver, J. Hagen // 19-1 MexxayHapoiHast KoH-
(hepeHIMs 0 BCTPOCHHOM U 00IIEepacpoOCTPaHCHHOW KOMITBIOTEPHOU TexHUKe: MaTepuaibl koHpepenuuu / IEEE. — llenbsnr,
Kuraii, 2021. — C. 1-6.

25. OcHOBaHHBbIEe Ha peajibHOIl Moaesn Mupa 3D reonpocTpaHcTBeHHbIe BO3MOKHOCTH Js1 Unity [DnexTpoHHbII
nokymeHT]. — Pexxum nocryma: URL: https://cesium.com/platform/cesium-for-unity. (nara obpamenus 23.10.2024).

PVJIBKO E.B.

HABUTAIISA IO CHUMKAM MECTHOCTHU HA OCHOBE COIIOCTABJIEHHUSA I'TYBOKHNX
MPU3HAKOB Y BU3YAJILHOM OJJOMETPUN

Boennas akademus Pecnyonuxu Benapyce
2. Munck, Pecnyoauxa benapyco

Ocnognotl npobnemoti 0l cucmem HAGUeAYUU NO CHUMKAM MECHHOCIMU SGISeMCsl HeCOOMEemcmeue
BUBVANILHBIX NPUSHAKOE MedicOy —(hpacmeHmom OHOPHOU Kapmou u uzobpasicenuem ¢ 6Oopma BIIJIA.
CHUmMKU Mo2ym Oblmb COeNaHbl 8 pa3iuiHoe 8peMs 200d, 8 PA3IUUHYI0 N0200Y, C PAIUYHbLIMU PACIUMETbHbIM
HOKPOBOM, YCIOBUAMU OCGEUWEHUs. U NOO PAIUYHLIMU VIAMU 0030pd OMHOCUMETIbHO NIOCKOCMU 3eMHOU
nogepxnocmu. Jlannas paboma npeoiazaem uUCNONb308AHUE CONOCMABGNIEHUS 2IYOOKUX NPUSHAKOS, U3GNIEYEHHbIX
8 PAMKAX HEKOHMPOIUPYEMO20 0OYYeHUsl C UCNOTb308AHUEM MPUNLEM-0WUOKU. dmo obecneuugaem noHuUMAaHue
cemanmuxu uzobpasicenutl, e 3asucsujel om mpancopmayuii mecmuocmu. B pamax nonéma nao mecmuocmuio
€ HeOOCMAamouYHbIM KOIUYECMBOM BU3VAIbHBIX NPUSHAKOS O Hasueayuu (1ec, noie), 6 pabome NpeonodceHo
OONONIHUMENbHOE UCHONB306AHUE BU3YAILHOU 000Mempul ¢ Npoyedypoll NPussi3vléanus K ONOPHOU Kapme
nocie nomyueHus OOCMAMOYHO20 — KOIUYECMEd NPUHAKOS, ¢ NOCMPOEHUeM 2UNOMe3 OMHOCUMENbHO
Mmecmononodycenus. Mzeneuenue 21yOOKUX — NPUBHAKO8 — HAMPEHUPOBAHHOU — Cemblo U3 ONOPHOU Kapmbl
U NpuMeHeHue K HUM QuUIbmpa SHMpoONUU NO38ONSEm NIAHUPOBAb MAPUPYMbL NOAEMA HAO MECHOCMbIO,
obnaoarowelrt 00CmMamo4HblM PA3HO0OPA3UEM NPUHAKOE, HEOOXOOUMBIX OJis HAGUSAYUU.

Knrouegwie cnosa: nasueayus no CHUMKAM MECHOCMU, 2IYOOKUE NPUSHAKU, MAWUHHOE 00YyYenue, 8BU3YATbHAS
odomempus, BI1JIA

CUCTEMHBINA AHAJIN3 U TPUKJIATHASI THOOPMATHUKA 1, 2025

SYSTEM ANALYSIS

19

Pyabko EBrenunii BuktopoBH4, KaHIuIaT TEXHUYECKUX HAyK, AOLEHT. HayaibHUK HaydHO-
HCCIIEIOBATENIbCKON J1TabOpaTopuy MOJCIHMPOBAHHMS BOCHHBIX JIGHCTBUH yUPEIKICHUS
obpazoBanust «Boennas axamemusi Pecryommkm bemapyce». Cdepa HaydHBIX HHTEPECOB:
rry0okoe o0yueHue, MallHHHOE 3peHne, 00ydeHne ¢ MOAKPEIIeHneM, HeHpPOHAyKH, aKTHBHBIN
BBIBOJI, IPUHIIUIT CBOOOAHOMN SHEPruu, peIeKCUBHOE YIpaBJICHHE.

Eugene Rulko, PhD, associate professor in computer science. The head of the research laboratory
of military operation simulation of the educational institution «Military academy of the Republic
of Belarusy. Research interests: deep learning, computer vision, reinforcement learning, neurosci-
ence, active inference, free energy principle, reflexive control.

E-mail: eugenil533@gmail.com

1, 2025

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

