4 CUCTEMHBIN AHAJIN3

YDC 004
DOI: 10.21122/2309-4923-2024-4-4-12

PRIHOZHY A.A., KARASIK O.N.

COMPETING ALL-PAIRS SHORTEST PATHS ALGORITHMS FOR SPARSE /
DENSE GRAPHS: IMPLEMENTATION AND COMPARISON

Belarussian National Technical University, Minsk, Republic of Belarus

In this paper we consider two families of competing algorithms for finding the shortest paths between all pairs
of vertices (APSP) in directed weighted large graphs with different edge densities: Dijkstra and Floyd-Warshall.
For comparison, we have taken Dijkstra's algorithm with dynamically varying binary heap, which solves the APSP
prob-lem purely in parallel by repeatedly executing on all vertices of the graph considered as source vertices, and we
have taken blocked Floyd-Warshall algorithm, which is also well-parallelizable. It is known that in terms of computa-
tional complexity, the first algorithm is preferable on sparse graphs and the second algorithm is preferable on dense
graphs. At the same time, it is not clear what are the ranges of graph densities at which the first algorithm will con-
sume less CPU time than the second algorithm. This paper describes multithreaded implementations of parallel al-
gorithms on multicore processors that make different usage of synchronization primitives such as mutex, conditional
variable, lock-ing, and atomic operation. By conducting computational experiments on an 8-core Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz, we found that each algorithm has a preferred graph density. In the case of multi-threaded
parallel imple-mentation, the blocked Floyd-Warshall algorithm has lower running time than Dijkstra's algorithm
if the graph densi-ty is greater than 0.5. Otherwise, Dijkstra's algorithm runs faster. In the case of single-threaded
implementation, the split point is 0.43.

Keywords: Sparse graph, dense graph, APSP problem, Dijkstra-family algorithms, Floyd-Warshall family
algorithms, multi-core processor, muti-threaded implementation, comparison

Introduction Then the Dijkstra running time in the case of the

APSP problem depending on the graph density is:
1) for a binary heap

o -(IN+Y- V- (V-1)) - log V);
2) for a Fibonacci heap
o - (M -log V+ Y- V- (IV-1)).

Thus, the speedup of Dijkstra's algorithm com-
pared to the Floyd-Warshall algorithm is:
1) for a binary heap

Speedup(BH) = [V]/ (1 + Y- ([V=1)) - log [V]);

2) for a Fibonacci heap

Models, methods, algorithms, and tools for
finding shortest paths between vertices of large, weighted
directed and undirected sparse and dense graphs [1] help
to solve many problems in many application areas. In
this paper, we consider directed simple graphs G = (V, E)
where V' is a set of vertices and £ is a set of edges with
positive weights. A graph can have a different number of
edges and can range from sparse to dense.

For the single-source shortest paths
problem (SSSP), Dijkstra's algorithm [2] with the
min-priority queue has the worst-time complexity of
O((IV] + |E]) - log]|V)) if the queue is implemented using a
binary heap (BH). A whole family of algorithms has been
developed based on Dijkstra's algorithm [3-5]. Thus,
Dijkstra's al-gorithm implemented using a Fibonacci

heap (FH) has a running time of O(|V] - log|V] + |E|). The
algorithm is most suitable for sparse graphs.

The Floyd-Warshall (FW) algorithm [6] for
the all-pairs shortest paths problem (APSP) has a time
complexity of O(|V]®) regardless of the number of edges
of the graph. The blocked Floyd-Warshall (BFW)
algorithm [7-20] is a generalization of the first algorithm
with increasing performance. The algorithm is most
suitable for dense graphs. APSP can also be solved by
performing N runs of Dijkstra's algorithm for vertices
V' considered as source vertices. For directed simple
graphs, the graph density is defined as:

Y=IE|/ V- (V=D

Speedup(FH) = V] / ((log [V + Y- ([V]=1))).

Figure 1 shows the dependence of Speedup(BH)
on the density of graphs consist-ing of 2400 vertices.
Dijkstra’s algorithm is faster than the Floyd-Warshall
algorithm in the graph density interval [0.0, 0.128118].
The Floyd-Warshall algorithm is faster in interval
(0.128118, 1.0]. Dijkstra’s algorithm with the Fibonacci
heap is faster than the Floyd-Warshall algorithm in the
much wider interval [0.0, 0.99716]. If we move from
algorithms to their realization on multicore processors,
the division point 0.128118 can be moved in the
interval [0, 1].

CUCTEMHBIA AHAJIN3 U TPAUKJIATHASI THOOPMATHUKA

4,2024

SYSTEM ANALYSIS

5

3

0.40

0.80 1.00
Figure 1. Speedup (in times) of Dijkstra’s APSP algorithm
compared to the Floyd-Warshall algorithm as a function
of graph density Y when graph size |V] = 2400

It has been observed in the literature that the binary
heap in Dijkstra’s algorithm can be implemented more
efficiently compared to the Fibonacci heap. Therefore, in
the paper, we consider and compare different sequential
and parallel implementations of the Floyd-Warshall
and Dijkstra (with a dynamically varying binary heap)
algorithms on large graphs of different densities.

Two parallel implementations of Dijkstra’s
APSP algorithm with dynamic binary heap

Let N = |V] and W be the adjacency matrix for a
graph G: w(i, i) = 0 for 1 <i < N; w(i, j) is the weight of
edge (i,)) € E; w(i, j) = o for (i,j) oo E and i #. Let D be
the distance matrix between all pairs of vertices i, j € V,
i #j and d, be the length of the shortest path from vertex
i to vertex j. Let P be a matrix whose element P; is the
vertex preceding vertex j in the path to be shortest from
i toj. The task of the APSP algorithm is to compute all
elements of matrices D and P given by the graph G.

Dijkstra’s SSSP algorithm can be easily ex-
tended to the APSP algorithm by repeatedly applying it
to rows i of matrices D and P. All rows can be computed
in parallel. Figure 2 shows the architecture of our version
Dv.1 of the Dijkstra APSP parallel algorithm implemen-
tation. The set of rows of matrix D and the set of rows
of matrix P are partitioned into corre-sponding slots
1 ... T of rows, which are computed by separate threads.
Each thread uses its own Dist and Prev vectors and
its own dynamic , therefore it can operate completely
independently of other threads. There is no need to
use synchronization facilities. If the running time of
Dijkstra’s algorithm for one source vertex is close to the
running time for another source vertex, the computational
load is almost the same for all threads.

Algorithm 1 describes the behavior of the
multithreaded parallel Dijkstra APSP algorithm. It
creates a thread that executes a function Dijkstra APSP
to compute the shortest paths from each source vertex
of the corresponding slot. Algorithm 2 implements this

function. Its inputs are the thread number ¢, the number
N of vertices, and the adjacency list AL, which is the set
of graph edges (and their weights) outgoing from each
vertex. Its outputs are matrices D and P, whose row
slots are updated by thread z. A Slot defines the range
from the first to the last row of matrices D and P that are
assigned to a thread. The function Dijkstra_SSSP com-
putes the vectors Dist and Prev, which are assigned to the
corresponding rows of D and P.

Algorithm 3 describes the Dijkstra SSSP al-
gorithm, which uses the AL graph adjacency list and
works with a min-priority queue QueueB, arrays Dist and
Prev. We represent the queue as a labeled dynamically
changing binary tree heap. Initially, the tree consists of
2N — 1 nodes (N terminal and N — 1 nonterminal) and has
[log n] depth.

Matric D

= Dist 1
Slot 1
Prev 1
Binary Heap 1
Slet T
N
1 Matrix P
1
Slor 1 Dist T
PrevT
v Slot T Binary Heap T

Figure 2. Version Dv.1 of parallel multithreaded
implementation of Dijkstra APSP algorithm with dynamic
binary heap

Algorithm 1: Multithreaded parallel Dijkstra APSP
algorithm (version Dv.1)

Input: A number N of graph vertices
Input: A number 7 of threads
Input: A graph adjacent list AL
Output: A matrix D[NxN] of shortest path distances
Output: A matrix P[NxN] of previous vertices in
shortest paths
fort<—1to T do
Create_Thread(t) with function
Dijkstra APSP(t, N, AL, D, P)
for t < 1to T'do
Join_Thread(t)
return B, P

Algorithm 2: Dijkstra APSP

Input: A number ¢ of thread
Input: A number N of graph vertices
Input: An adjacent list AL of graph
Output: A matrix D of shortest path distances
Output: A matrix Pof previous vertices in shortest
paths
QueueB <« Create_Binary Queue(N, AL)
Dist « Create_Initialize Dist(N)

4,2024

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIV3

Prev < Create_Initialize_Prev(N)

Slot «— Choose_Slot(N, t)

for row « Slot.first to Slot.last do
Dijkstra_SSSP(N, AL, row, QueueB, Dist, Prev)
D(row) « Dist
P(row) < Prev

return B, P

Each node has two labels: vertex identifier v and
key Dist[v]. The root of the tree points to the vertex with
the smallest key. QueueB supports two operations:

1. Extract-min removes the NearestV element
with the smallest key from QueueB; this removes one
terminal and one non-terminal vertex from the tree.

2. Decrease-key replaces the current key
Dist[AdjV.id] of adjacent vertex AdjV.id with the NewDist
key, and then reorders QueueB by changing the labels of
the vertices in the tree.

Algorithm 3: Dijkstra_SSSP

Input: A number N of graph vertices
Input: An adjacent list AL of graph
Input: A row of matrix D and matrix P
Output: A vector Dist of shortest path distances
Output: A vector Prev of previous vertices in paths
fori— 1toNdo
Dist[v] « ©
Prev[v] < undefined
Dist[row] < 0
Prev[row] < row
QueueB « Initialize_Queue(N, row)
for Step < 1 to N do
NearestV «— QueueB.root.id
Distance < Dist[NearestV)
if Distance = © «— then break
for AdjV < AL[NearestV].list do
NewDist < Distance + AdjV.key
if Dist[AdjV.id] > NewDist then
Dist[AdjV.id] < NewDist
Prev[AdjV.id] < NearestV
Decrease_Key (QueueB, AdjV.id, NewDist)
Extract Min (QueueB, NearestV)
return Dist, Prev

As the binary tree becomes smaller step by
step, the average time complexity of Extract-min and
Decrease-key operations is less than log |V]. This is the
source of speeding up of Algorithm 3.

Figure 3 shows the Dv.2 version of our im-
plementation of the parallel Dijkstra APSP algorithm.
Each thread captures matching rows of matrices D and P
concurrently and calls Dijkstra _SSSP. After computing
the shortest paths for the source, the thread captures the
next rows. Since the pool is shared by all threads, our
implementation uses atomic operations to select rows
from the pool.

Parallel BFW and its implementation with
threads, block pools and atomic operations

BFW performs graph partitioning into sub-graphs
with S vertices and creates blocked matrices B[M*M]
of distances of shortest paths and P[MxM] of previous
vertices on shortest paths, where M = N/S. In the outer loop
along m, three types of blocks are computed sequentially:
diagonal, cross and peripheral. The cross blocks are
collected in a PoolC of size 2:(M — 1) and are computed
mutually in parallel by the Perform_Parallel Pool
function. Peripheral blocks are collected in PoolP of size
(M —1)* and are computed in parallel by the same function.

The architecture of the multithreaded im-
plementation of the Dv.l version of the algorithm
is shown in Figure 3. The main thread computes the
diagonal blocks using the FIW or GEA algorithm [15].
Threads 1 to 7 compute cross and peripheral blocks
from PoolC and PoolP. The architecture has a drawback
as the Perform Parallel Pool function (Algorithm
5) creates and deletes all pools and threads 2-M times.
Its advantage is no need for synchronization between
Algorithms 4 and 5.

Algorithm 4: Parallel BFW with pools and atomic
operations

Input: A number N of input graph vertices
Input: A matrix W[NxN] of graph edge weights
Input: A number M of blocks
Input: A size S of block
Output: A blocked matrix B[M *xM] of path distances
Output: A blocked matrix P[M xM] of previous vertices
B[M*M] — WINx*N]
Initialize_Prev (P[M*M])
for m < 1 to M do
Calculate_Block (S, B, P, m, m, m)
Initialize_Pool _C (Pool _C of Blocks)
forv e {l...M} and v # m do

Add _to_Pool C (v, m, m)

Add _to_Pool C(m, m, v)
Perform_Parallel Pool (PoolC of Blocks, S, B, P)
Initialize_Pool P (Pool P of Blocks)
forve {1..M} and v#m do

foru e {1...M} and u #m do
Add to_Pool P(v, m, u)
Perform_Parallel _Pool (PoolP of Blocks, S, B, P)
return B, P

Algorithm 5: Perform_Parallel Pool

Input: A Pool of Blocks to be computed
Input: A size S of block
Inout: A blocked matrix B of path distances
Inout: A blocked matrix P of previous vertices
fort<— 1to 7T do
Create_Thread(t) with function
Compute Blocks (Pool of Blocks, t, S, B, P)
for t — 1 to T do
Join_Thread(t)

CHUCTEMHBINA AHAJIN3 U TIPAKJIATHASI THOOPMATHKA

4, 2024

SYSTEM ANALYSIS 7
1
! _ Dist 1
row i
Prev 1
Matrix D
Binary Heap 1
Fing I(’
Pool ¥
Of L
TOWS 11
SO Dist T
Matrix P PrevT
— Binary Heap T
N

Figure 3. Version Dv.2 of parallel multi-threaded implementation of the Dijkstra APSP algorithm with a pool of rows

The Compute Blocks function (Algorithm 6)
is run by threads 1 to 7. Each function call iteratively
grabs a unique record from the same pool and uses it to
recalculate one block. All records that are in the pool
can be processed in parallel. The capture of records is
accomplished using atomic operations. Different threads
can process different number of records.

Algorithm 6: Compute Blocks implemented by each
thread

Input: A Pool of Blocks to be computed
Input: A thread number ¢
Input: A size S of block
InOut: A matrix B updated for blocks of pool
InOut: A matrix P updated for blocks of pool
while (true) do
rec <— Atomic_Next record Capture (Pool _of Blocks)

The Compute_Blocks function (Algorithm 7) has
six inputs: the block size S, the three indices v, m and u
of the vertex subsets, the matrices B and P. It recalculates
the block B, through the blocks B, and B, , of which
two or three may be the same. ’ '

Algorithm 7: Block calculation (Calculate Block)

Input: A size S of block
Input: Indices v, m and u of vertex subsets
InpOut: A blocked matrix B of path distances
InpOut: A blocked matrix P of previous vertices
for k< 1to Sdo
for i — 1to Sdo
for j <— 1to Sdo
sum < B _(i,k)+B (k j)
it B (i,])'> sum then

if rec # empty then B (i, j) < sum
Calculate Block (S, rec.v, rec.m, rec.u, B, P i .
else break ‘ / P] —P, (k]
PoolC
Blocked matrices Band P __ Record 1
1 "M -
1|\ P3|P3|Cl1|P3 P3 r Record 2x(M—1) o
- ’)
P3| P3|CL|P3| .. |P3k_ -7 s Atomic
AN | PoolP *.operations * "
c2 czcz |2k s S0
= Record 1 L
P3| P3| €CINP3| ... | P3 !
~ f o
s - Record (M — 1))'
m|p3|p3ler|ps| NpsfFT ! 7
A
“v¢" Thread main
(FW, GEA)

Figure 4. FWv.1 version of parallel multi-threaded implementation of BEW algorithm with pools PoolC and PoolP;

FW stands for Floyd-Warshall, / stands heterogeneous, US —

unequal sizes and GEA stands for graph extension algorithm

4, 2024

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

8 CUCTEMHBI AHAJIN3
- g 7 %\ - o
; y ~. Cond Var
PoolC or Slots PooIRJor Slots ™~ _ - FullPool
Record 1 Record 1 ~ T
Blocked matrices ;
. wan '
Band P J Muzex
Record 2=(M— 1) Record (M — 1)2 v R
Ry 4 s ‘ !
~ ' | S Cond Var
See Atomic operations on gools ;o
. i ot assign of slots to Ihﬂleads S EmptyPool
~ N . =l - v / /, - -
Thread] 7 ThreadT
(BlockCalc) (BlockCalc)

Figure 5. Version FWv.2 and FWv.3 of parallel multi-threaded implementation of BF¥ algorithm with pools, mutexes and con-
ditional variables

Two implementations of parallel BFW using
threads, mutexes and conditional variables

To avoid multiple creation and deletion of
worker threads in the loop across m (Algorithm 4), we
have developed FWv.2 and FWv.3 ver-sions of parallel
implementations of BFW (Figure 5). They use a mutex
and conditional variables FullPool and EmptyPool to
synchronize the main thread executing Algorithm 4 and
worker threads 1 to T executing Algorithm 7 to safely
recalculate all blocks described in the pool. The mutex
protects the pool from destruction. The versions differ
from each other in the way the threads access entries
in the pool. The FWv.2 version pre-divides the pool
record set into slots, one slot for one thread. No conflict
oc-curs when two and more threads capture the same
record. In the FWv.3 version, each thread has access
to all records in the pool and uses atomic operations to
dynamically capture the next record for processing. The
FWv.2 version is preferred when each block is computed
at approximately the same time and the running time of
each thread is predictable in advance. The FWv.l and
FWv.3 versions may be faster if blocks of different types
are computed by different heterogeneous algorithms
requiring different CPU times, or if blocks are of une-
qual size and require different computation times.

Results

Experimental results are obtained on an Intel(R)
Core(TM) 17-10700 CPU @ 2.90GHz 8-core 16 physical
thread processor using C++ language and the Visual
Studio 2019 Community Edition compiler (MSVC++
14.29). Table 1 shows that version Dv.l of Dijkstra’s
multi-threaded implementation of APSP is on average
3.2 % faster than version Dv.2, although it loses to Dv.2
on graphs of certain sizes with density 0.2. For graphs of
density 0.8, Dv.2 is on average 2.85 % faster than Dv.1.

Table 1. Comparison of running times (%) on
different graph sizes of two versions of multi-threaded
implementations of Dijkstra’s APSP algorithm for graph
densities of 0.2 and 0.8

Graph size Density 0.2 Density 0.8
1200 -2.86 1.85
2400 1.25 -0.61
3600 -0.24 3.73
4800 -0.41 5.54
6000 7.84 4.63
7200 10.27 2.78
8400 6.58 2.05

Table 2 compares the runtimes of three multi-
threaded implementations of the blocked Floyd-Warshall
algorithm on graphs of sizes 1200-8400. For graphs of
density 0.8, the FWv.1 version wins on average 4.52 %
over FWv.2 and 4.64 % over FWv.3. The FWv.2 version
wins 0.26 % over FWv.3.

Table 2. Comparison (%) of running times of three
versions of BFW implementions for graph density 0.8

Graph size v.l/v2 v.l/v3 v.2/v.3
1200 -1.94 -1.94 0.00
2400 1.90 0.32 1.59
3600 8.81 15.01 -7.30
4800 14.36 10.94 3.85
6000 -0.53 -1.12 0.58

Figure 6 compares single-thread implementations
of sequential FIW, BFW and Dijkstra APSP on graphs
of different densities. As can be seen, BFW is about
1.83 times faster than FW on all graphs. Dijkstra
is 6.07 times faster than FW at density = 0.1 and is
1.1 times slower at density = 1. Dijkstra is 3.67 times

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

4,2024

SYSTEM ANALYSIS

9

faster than BFW at density = 0.1 and twice as slow
at density = 1. If density < 0.43, Dijkstra beats BFW,
otherwise it loses.

0.00
5.00
4,00 LN
3.00
2.00

1.00

0.00
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6. Comparison of three single-threaded APSP algo-
rithms on graphs with 2400 vertices and block-size 120 as a
function of graph density: long dashed line — reduction
of runtime (in times) of BFW compared to FW, dashed line —
Dijkstra compared to £/, and solid line — Dijkstra compared
to BFW

Figure 7 shows a comparison of two paral-
lel multi-threaded implementations of the APSP
algorithms with each other and with their single-thread
implementations at graph densities from 0.1 to 1. It is
shown that parallel APSP Dijkstra is up to 3.98 times
faster than parallel BFW when the graph density < 0.5.
Parallel BFW is twice as fast as parallel Dijkstra if the
density > 0.5.

10.00
9.00 -
A---
2.00
7.00
6.00
5.00
4.00
3.00
2.00
1.00

0.00
0.0 02 0.4 0.6 08 10

B S Bt Sat. it S ot S

Figure 7. Comparison of two parallel 16-threaded
implementations of APSP algorithms with each other and with
their sequential counterparts on graphs of 2400 vertices and
block-size 120 as a function of graph density:
solid line — runtime reduction (in times) of parallel Dijkstra
compared to parallel BFW, long dashed line — of parallel
Dijkstra compared to sequential Dijkstra, and dashed line —
of parallel BFW compared to sequential BFIW

Parallel Dijkstra is faster than sequential Dijkstra
by an average 8.5 times. Parallel BFW is 8.41 times
faster than sequential BFW. The division point of the
interval [0, 1] has moved to the centre. We attribute this
with three main reasons:

1) the average case rather than the worst case
is evaluated; 2)the effect of a multi-core processor
with hierarchical memory; and 3) the properties of a
dynamically modified heap. Table 3 shows that the
number the decrease-key calls is bounded and the
number of levels of binary heap the key moves over
remains between 1.59 and 1.71 when the graph density
isin [0.1, 1.0].

Table 3. Parameters of Decrease-Key in dynamic binary
heap for graphs of 2400 vertices with different edge

densities
Bges% | (| DKeas | PRI
0.1 578122 10243 56 1.71
0.2 1152695 10828 106 1.68
0.3 1728197 11071 156 1.67
0.4 2305101 11206 205 1.66
0.5 2879364 11245 256 1.65
0.6 3455521 11366 304 1.64
0.7 4031390 11491 350 1.62
0.8 4606640 11561 398 1.61
0.9 5182374 11561 448 1.60
1.0 5757600 11511 500 1.59

Figure 8 shows that the parallel Dijkstra al-
gorithm is faster than the parallel BFW algorithm by a
factor of 2.23 to 2.67 on sparse graphs of 1200-8400
vertices with density 0.2.

2.80
——
‘“—\..____h‘
240
*— o
2.00
Y

1.60 AT e

A
1.20

1000 3000 5000 7000 9000

Figure 8. Comparison of parallel APSP Dijkstra and BFW on
graph of different sizes: solid line — reduction of runtime (in
times) of Dijkstra compared to BFW at density = 0.2; dashed
line — reduction of runtime of BF W compared to Dijkstra at
density = 0.8

At the same time, Figure 8 shows that the
parallel BFW algorithm is faster than Dijkstra’s parallel
algorithm by a factor of 1.39 to 1.72 on dense graphs of
1200—7200 vertices with density 0.8. Dijkstra’s gain over
BFW decreases as the graph size increases from 1200 to
3600. Then the gain increases up to a graph size of 6000.
For larger graphs, the gain decreases.

4,2024

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

10

CUCTEMHBIN AHAJIN3

Conclusion

The paper has shown that the computational
complexity of all-pirs shortest paths algorithms can
be evaluated theoretically approximated. When the
algorithms are implemented with par-allel multithreaded
applications for multi-core processors, the regions
of preference of the al-gorithms differs from those
theoretically pre-dicted. We have developed two parallel

multi-thread implementations of parallel Dijkstra APSP
algorithm with dynamic binary heap and three parallel
multi-thread implementations of blocked Floyd-Warshall
algorithm and experi-mentally have shown on Intel(R)
Core(TM) 17-10700 CPU @ 2.90GHz 8-core processor
that Dijkstra’s APSP is faster than the blocked Floyd-
Warshall on sparse graphs with density <0.5. On graphs
with density > 0.5, the blocked Floyd-Warshall is faster
than Dijkstra’s APSP.

REFERENCES

1. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv:

1705.02044v1 [cs.DS], 4 May 2017, 26 p.

2. Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1, no. 1,

pp. 269-271.

3. Bellman R.E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87-90.
4. Johnson D.B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24 no. 1, pp. 1-13.
5. Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU using CUDA. International conference on

high-performance computing. Springer, 2007, pp. 197-208.

6. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.

7. Katz G.J., Kider J.T. All-pairs shortest paths for large graphs on the GPU. GH’08: Proceedings of the 23" ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47-55.

8. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU computation of all-pairs
shortest paths. IEEE 28" International Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 360-369.

9. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Exper-

imental Algorithmics (JEA), 2003, vol. 8, pp. 857-874.

10. Park J.S., Penner M., and Prasanna V.K. Optimizing graph algorithms for improved cache performance. IEEE
Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp. 769-782.

11. Yang S., Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse Graph. ICS "23:
Proceedings of the 37" International Conference on Supercomputing, 2023, pp. 277-288.

12. Prihozhy A.A., Karasik O.N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm. Proceedings
of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266), pp. 77-83.

13. Prihozhy A.A., Karasik O.N. New blocked all-pairs shortest paths algorithms operating on blocks of unequal sizes.
System analysis and applied information science, 2023, no. 4, pp. 4-13.

14. Karasik O.N., Prihozhy A.A. Blocked algorithm of finding all-pairs shortest paths in graphs divided into weakly
connected clusters. System analysis and applied information science, 2024, no. 2, pp. 4-10.

15. Prihozhy A.A., Karasik O.N. Inference of shortest path algorithms with spatial and temporal locality for big data
processing. Big Data and Advanced Analytics: proceedings of VIII international conference. Minsk, Bestprint Publ., 2022, pp. 56-66.

16. Karasik O.N., Prihozhy A.A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core imple-
mentation. System analysis and applied information science, 2022, no. 3, pp. 57-65.

17. Prihozhy A.A. Generation of shortest path search dataflow networks of actors for parallel multicore implementation.

Informatics, 2023, vol. 20, no. 2, pp. 65-84.

18. Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths algorithms. System

analysis and applied information science, 2021, no. 3, pp. 40-50.

19. Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest paths algorithms.
System analysis and applied information science, 2019, no. 4, pp. 10-18.

20. Prihozhy A.A., Karasik O.N. Influence of shortest path algorithms on energy consumption of multi-core processors.
System analysis and applied information science, 2023, no. 2, pp. 4-12.

JINTEPATYPA

1. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv:

1705.02044v1 [cs.DS], 4 May 2017, 26 p.

2. Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1, no. 1,

pp. 269-271.

3. Bellman R.E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87-90.
4. Johnson D.B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24, no. 1, pp. 1-13.

CUCTEMHBINA AHAJIN3 U TIPUKJIATHASI THOOPMATHUKA

4,2024

SYSTEM ANALYSIS 11

5. Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU using CUDA. International conference on
high-performance computing. Springer, 2007, pp. 197-208.

6. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5 (6), p. 345.

7. Katz G.J., Kider J.T. All-pairs shortest paths for large graphs on the GPU. GH’08: Proceedings of the 23 ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47-55.

8. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU computation of all-pairs
shortest paths. IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 360-369.

9. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Exper-
imental Algorithmics (JEA), 2003, vol. 8, pp. 857-874.

10. Park J.S., Penner M., and Prasanna V.K. Optimizing graph algorithms for improved cache performance. IEEE
Trans. on Parallel and Distributed Systems, 2004, no. 15 (9), pp. 769-782.

11. Yang S., Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse Graph. ICS '23:
Proceedings of the 37th International Conference on Supercomputing, 2023, pp. 277-288.

12. Ipuxoxmii A.A., Kapacuk O.H. YcoBepmieHCTBOBaHHBII Pa3HOPOAHBII OJIOYHO-TIApAIUICBHBIH aJrOPUTM MOUCKA
kparyaiimmx myteit Ha rpade. Tpymst BI'TY. Cep. 3, dusuxo-mMaremMaTndeckue Hayku ¥ HHpopmaTnka, 2023, Ne 1 (266), c. 77-83.

13. Hpuxoxuii A.A., Kapacux O.H. HoBbie 0:104HBIC aNTOPUTMBI TTOMCKa KpaTUYAHIINX ITyTeH MEXKIy BCEMH Mapamu
BepIIMH Tpada, padoTaromue Ha OJ0Kax HepaBHBIX pa3MepoB. CHCTEMHBIH aHAN3 U ipuKIagHas nHpopmaruka. 2023, Ne 4, c. 4-13.

14. Kapacuk O.H., Ilpuxoxuii A.A. bro4Hslii anropuT™ Moucka KpaT4aiinnx MyTel MexXIy BCEMH IapaMy BEpIIUH B
rpagax co c1abocBA3aHHBIMU KinacTepaMu. CHCTEMHBIN aHanu3 U npukiagHas uadopmaruka. 2024, Ne 2, c. 4-10.

15. Prihozhy A.A., Karasik O.N. Inference of shortest path algorithms with spatial and temporal locality for big data
processing. Big Data and Advanced Analytics: cOopauk Hayunslii crareit VIII MexyHapoaHO# Hay4HO-NIPaKTHYECKOil KoHpe-
penuuu, Munck, 11-12 mas 2022 roga. Munck, BI'VUP, 2022, c. 56-66.

16. Kapacuxk O.H., IIpuxoxknii A.A. Hactpoiika 6;104HO-nIapauiesIbHOrO JITOPUTMa ITOUCKA KPATKUX MyTel Ha d(-(pex-
THUBHYIO MHOTOSIJICPHYIO peanu3anuio. CHCTEMHBIIN aHaiIn3 U NpHuKiIagHas nadopmaruka. 2022, Ne 3, ¢. 57-65.

17. Ilpuxoxuii A.A. I'eHepalys NOTOKOBBIX CETEH aKTOPOB MOUCKA KpaTyaluX IyTeld A NapaulelIbHOM MHOIosAep-
HOM peanm3anuu. Mudopmarnka, 2023, Ne 2, c. 65-84.

18. Mpuxoxkmii A.A. OnTHMu3anust pa3MeIIeHNs JaHHBIX B HEPAPXUIECKON MaMsTH ISt OIIOYHBIX aJTOPUTMOB MOMCKA
Kparyaimmx nyteid. CHCTEMHBIN aHaJIM3 U MPHUKIaaHas nHpopmaruka, 2021, no. 3, c. 40-50.

19. lpuxoxuii A.A. MozaenupoBaHre K311 MPSIMOTO 0TOOPAKEHHS U aCCONMATUBHBIX KAIII Ha aJTOPUTMAaX MOHMCKA KpaT-
yalimux myTeil Ha rpade. CUCTEMHBII aHaN3 1 NpuKiIagHas nHpopmatuka, 2019, no. 4, c. 10-18.

20. Ipuxoxuii A.A., Kapacuk O.H. Bousaue anropuTMoB moucka Kpar4aiflinx myTeld Ha SHEpronoTpeOieHne MHOTOsI-
JepHBIX nporeccopoB. CHCTeMHBIN aHalu3 U npukiaaHas napopmarnka, 2023, Ne 2, ¢. 4-12.

TIPUXO)KHU A.A., KAPACHK O.H.

KOHKYPHUPYIOIIHUE AJITOPUTMbI HOUCKA KPATYAWIINX ITYTEX
MEXKAY BCEMU TAPAMMU BEPIIUH PA3ZPEKEHHbBIX / IINTOTHBIX I'PA®OB:
PEAJIM3ALIUA U CPABHEHUE

benopyccruii nayuonanvhulii mexuuueckutl ynueepcumem, Munck, Pecnyonuxa benrapyce

B cmamve paccmampusaromes 0sa cemelcmea KOHKYPUPYIOWUX aN2OPUMMOS HOUCKA KPAMYAUUIUX
nymeti medxncoy ecemu napamu eepuiun (APSP) 6 opuenmupo6annvix 636euleHHbIX O0bWUX 2papax ¢ pasiuiHou
niomuocmoto pebdep. [etikcmpor u @nouda-Yopwenna. /[na cpasHenus mol 831U aneopumm Jeuxkcmpol
¢ OUHamMu4ecku U3MeHsAeMOoU O080UUHOU Kyuel, Komopwlli pewiaem 3adauyy APSP uucmo napannensHo nymem
MHO20KPAMHO20 6bINOTHEHUA HA 8CEX GePUIUHAX 2pagha, pACCMAMPUBAEMbIX 6 Kauecmee UCXOOHbIX, U 637U
onounvill aneopumm Daovida-Yopuieana, Komopvii maxdice AGIAEMC XOpoulo pacnapaiieiueaemvim. Hzsecmmo,
YUMo ¢ MOYKU 3PeHUs BLINUCTUMENLHOU CNIONCHOCIU Nepeblll aleOpUumm npeonoymumenvHee Ha paspedcenbix
epaghax, a 6mopoil — Ha NIOMHBIX. B mo dice 8pems HesICHO, KaKo8bl OUana3onbl NIOMHOCMell 2pagoe, npu KOMopuvix
nepewlll aneopumm 6Oyoem nompeonsims npPOYeccoOpHoe BpeMs, MeHvbuiee, 4eM Gmopou airzopumm. B cmamve
ONUCAHBL PEANU3AYUU MHO2ONOMOUHBIX NAPATIETLHBIX ANCOPUMMOE HA MHO20SI0EPHBIX NPOYECCopax, KOmopble no-
PA3HOMY UCROIL3YIOM MAaKue NpUMUMUGbl CUHXPOHUZAYUU, KAK MbIOMEKC, YCI06HAS NepeMeHHAs, OIOKUpOGKa u
amomapnas onepayusi. Ilposeods eviuuciumenvhvie sxcnepumenmost Ha 8-s0eprom npoyeccope Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz, mbl 0OHapyscunu, ymo Kaxicowlil aieopumm umeenm npeonodmumensHyo niomHOCHb
epaghos. B ciyuae MHO20NOMOYHOU nApaineivHol peamuzayuu oaounvlii areopumm Daotida-Yopwenna umeem
Menbulee epems pabomul, yem aneopumm Jeuxcmpnl, eciu niomuocms epaga donvuie 0,5. B npomusnom ciyuae
aneopumm [etixkcmpul pabomaem 6vicmpee. B ciyuae 00nonomounotl peanuzayuu mouxa pazoenenus — 0,43.

Knroueswvie cnosa: Paspeosicennvtii epagh, nnomuwiii epag, 3adawa APSP, ancopummer cemeticmea /etikempel,
anzopummbul cemeticmea Pnotida-Yopuienna, MHo20a0epHbvlil NPoYeccop, MHO2ONOMOYHAS Peau3ayus, cpagHeHue

4,2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

12 CUCTEMHBIN AHAJIN3

Anatoly Prihozhy is full professor at Computer and system software department of Belarussian
national technical university, Doctor of Science (1999) and Full Professor (2001). His research
interests include programming and hardware description languages, parallelizing compilers, and
computer aided design techniques and tools for software and hardware at logic, high and system
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern
and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer
Academic Publishers, World Scientific and others have published his works.

Mpuxoxmii A.A., npodeccop xkadenper «IIporpammuoe obecrieueHre WHGOPMAIMOHHBIX
CHCTEM U TeXHOJOruil» bemopycckoro HaIMOHANBHOTO TEXHHYECKOTO YHHBEPCHUTETA,
n.1.H. (1999), mumnom mpodeccopa (2001). B chepy ero HaydyHbIX HMHTEPECOB BXOMST SI3BIKH
HPOrPaMMHPOBAHNS M ONUCAHHS alIapaTyphl, pacHapajuIeINBaIONINe KOMIHIATOPBI, METOIbB
U CPEeACTBa aBTOMATH3UPOBAHHOTO NMPOEKTUPOBAHNUS MPOTPAMMHBIX U alNapaTHBIX CPEICTB Ha
JIOTUYECKOM, BBICOKOM M CHCTEMHOM YPOBHSX, a TaK)Ke HE IOJIHOCTBIO OIPEeJICHHbIX JIOTH-
yeckux cucreM. Mmeer Gonee 300 myOnmkanmit B Bocrounoit n 3anaguoit Esporne, CIIA n
Kanane. Ero paboTsl omyOnukoBaHbI B TaKUX MHPOBBIX m3matenscTBax, kak IEEE, Springer,
Kluwer Academic Publishers, World Scientific u npyrux.

E-mail: prihozhy@bntu.by

Karasik Oleg is a Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk,
Belarus, and PhD in Technical Science. His research interests include parallel multithreaded
applications and the parallelization for multicore and multiprocessor systems.

Kapacuk O.H., Benymuii WHKeHEp WHOCTPAHHOTO MPOW3BOACTBEHHOTO YHUTApPHOTO
npeanpustusi « MCCODT COJIIOLIEH3» (wacts Coherent Solutions), r. Munck, benapycs,
K.T.H. (2019). B cdepy ero HaydHBIX HMHTEPECOB BXOJST MapajuIClIbHbIE MHOTOIOTOYHBIC
TIPWIIOXKEHHS ¥ PacTiapaUIeIMBaHIe JUIsl MHOTOSIEPHBIX M MHOTOITPOIIECCOPHBIX CHCTEM.

E-mail: karasik.oleg.nikolacvich@gmail.com

CUCTEMHBINA AHAJIN3 U TIPUKJIATHASI THOOPMATHUKA 4,2024

