4 CUCTEMHBINA AHAJIN3

VIIK 004
DOI: 10.21122/2309-4923-2024-2-4-10

KARASIK O.N., PRIHOZHY A.A.

BLOCKED ALGORITHM OF FINDING ALL-PAIRS SHORTEST PATHS IN GRAPHS
DIVIDED INTO WEAKLY CONNECTED CLUSTERS

Belarusian National Technical University
Minsk, Republic of Belarus

The problem of finding all shortest paths between vertices in a graph (APSP) has real-life applications
in planning, communication, economics and many other areas. APSP problem can be solved using various algo-
rithms, starting from Floyd-Warshall’s algorithm and ending with advanced, much faster blocked algorithms like
Heterogeneous Blocked All-Pairs Shortest Path Algorithm designed to fully utilize underlying hardware resources
and utilize inter-data relationships. In the paper, we propose a novel Blocked all-pairs Shortest Paths algorithm
for Clustered Graphs (BSPCG) (in sequential and parallel forms) which utilizes the graph clustering information
to significantly reduce the number of calculations by performing shortest paths search only though bridge verti-
ces between clusters. We performed a set of comparing experiments for BSPCG and standard Blocked All-Pairs
Shortest Path (BFW) algorithm on four randomly generated graphs of 4800 and 9600 vertices with different cluster
configurations to determine the efficiency of calculation of paths passing through bridge vertices. All experiments
were executed on a computer with two Intel Xeon E5-2620v4 processors (8 cores, 16 hardware threads and shared
20 MB L3 cache). In all the experiments the novel BSPCG algorithm outperformed the standard BFW algo-
rithm. In single-threaded scenarios, BSPCG outperformed BFW up to 4.6 times on graphs of 4800 vertices and
up to 2.7 times on graphs of 9600 vertices. In the multi-threaded scenarios, BSPCG also outperformed BFW up to
4.0 times on graphs of 4800 vertices and up to 2.7 times on graphs of 9600 vertices. The proposed algorithm can
be used in scenarios where clustering information stays intact or slightly modified based on the changes in graph

and can be reused for future calculation of all-pairs shortest paths in the graph.
Keywords: shortest paths algorithm, blocked algorithm, graph clustering, single-thread application,

multi-threaded application, speedup

Introduction

The problem of finding shortest paths between
vertices in a graph has multiple real-life applications.
It is used to solve mazes, optimize traffic networks, to
improve task planning, etc [1-3]. The problem can be
formulated as to find shortest paths originated from
one source (Single Source Shortest Path — SSSP) and
to find shortest paths between all-pairs of vertices (All
Pairs Shortest Path — APSP). Dijkstra’s algorithm [4]
is a classic solution to SSSP and Floyd-Warshall’s
algorithm [5] is a classic solution to APSP.

In context of the APSP problem, the Floyd-
Warshall’s algorithm demonstrate maximum efficiency
when it is applied to dense or complete graphs and much
less efficiency when it is applied to sparse graphs. The
same rule applies to algorithm’s modifications, which
are primarily focused on improving memory usage and
effective parallelization [6-9].

In our recent research [10—12] we started to focus
on applicability of a Blocked Floyd-Warshall algorithm
(BFW) to sparse graphs and on utilization of additional
information about the graph to reduce the calculation
time and resource consumption. In this paper, we focus
on extension of the recently proposed Blocked Shortest
Paths algorithm [11] with Unequally Sized blocks
(BSPUS) using information about graph clustering to

significantly reduce the number of calculations on sparse
graphs with weakly connected clusters.

APSP algorithms

Let a directed graph G consists of a set V' of
vertices (numbered 1...N) and a set £ of edges with real
edge-weights. A cost adjacency matrix D of size NxN
represents G. It is initialized with weights of the edges
in such a way, that element D[, /] is the weight of the
edge between vertices i and J.

Floyd-Warshall s (FW) algorithm [5] iterates over
the cost adjacency matrix D and checks existence of a
path from vertex i to vertex j through existence of paths
from i to k and from k& to j (Figure 1). The algorithm
always iterates over all the vertices and doesn’t account
for the density or structure of the graph.

Blocked Floyd-Warshall's (BFW) algorithm [8]
operates on a matrix of blocks B which is created by
dividing a matrix D into M equally sized blocks of size L
in such a way that M*L=N (Figure 2).

The outer loop of BFW has M iterations. Each
of them performs (Figure 3):

1. Calculation of “diagonal” block.

2. Calculation of “cross” blocks.

3. Calculation of “peripheral” blocks.

CUCTEMHBIA AHAJIN3 U TPAUKJIATHASI THOOPMATHUKA

2,2024

SYSTEM ANALYSIS 5
function FW() { Phase 1 Phase 2 Phase 3
forke {1...N}{
forie {1...N}{ -
forje {1...N}{ Iteration #1
D[i,j] = min(D[i,j], D[i,k] + D[kyj])
}
}
} B
¥
Iteration #2
Figure 1. Pseudocode of original Floyd-Warshall (FW)
algorithm
. Blocks being calculated
Bi1|B12[B13|Bus |:| Blocks used as dependencies in calculations
B2.1{B22|B2.3|B24
© Figure 3. Visualization of two frist iterations of Blocked
Bs.1|Bs.2|Bs3|Bss Floyd-Warshall (BFW) algorithm
B4‘1 B4‘2 B4‘3 B4,4
Matrix D Matrix B fm;:trl?nn : 1{?;4/ 0 {M} {
Figure 2. Visualization of matrix D being split into matrix ?;:i(z[?l"t?_]_’A‘?[[}ms;:g’iB;ETp;”{z]);
of blocks B proc(Bli,m), Bli,m], B[m,m]);
proc(B[m,i], B[m,m], B[m,i]);
All calculations are performed by a single }
procedure which accepts three input blocks at a time. fori e {1.. M} andixm {
The procedure calculates the paths between all vertices forJ Zr{olc(B[gi s;n[fl;'; g[iz,j])-
represented by block Bl passing through the vertices B '
represented by B2 and B3 (Figure 4). In scope of one }
iteration, calculations have the following effect: }
e In case of diagonal block, the procedure accepts !
the single diagonal block as B1, B2 and B3. This results in function proc(B1, B2, B3) {
calculation of all shortest paths between pairs of vertices forke {1...L} {
associated with the diagonal block. forie{l.. L} {
e In case of cross blocks, the procedure accepts foglﬁ. ’}.{]1="‘;1;L]3(1;1[1‘ 1, B2Lik] + B3[k,])
the diagonal block as B3 (vertical) or B2 (horizontal) and }
the cross block as B1 and B2 or B1 and B3 respectively. }
This results in a calculation of all shortest paths between }
all vertices of horizontal and vertical blocks of cross }
through vertices of the diagonal block.
e In case of peripheral blocks, the procedure Figure 4. Pseudocode of Blocked Floyd-Warshall (BFW)
accepts one peripheral and two cross blocks (vertical and algorithm
horizontal) as B1, B2 and B3 respectively. This results in
calculation of all shortest paths between pairs of vertices
of peripheral block through vertices of diagonal block. Uil Uix [Uis
It should be noted that in each iteration BFW oS
calculates the shortest paths between all vertices through I#> Ua, U;z AU
vertices of the diagonal block. / /)
Blocked all-pairs Shortest Paths algorithm with Usd Us. |Uss
Unequally Sized blocks (BSPUS) was proposed in [11];
it generalizes the idea of BFW for graphs divided into Matrix D Matrix D

unequally sized subgraphs. It extends the capabilities of
existing blocked APSP algorithms and allows to solve
the APSP problem on graphs that are partitioned into
weakly connected dense clusters. The algorithm operates
on a matrix U of blocks, which is created by dividing
matrix D into M unequal blocks of sizes S = {S, ... ¢}
in such a way that S +...+S = 1. (Figure 5).

Figure 5. Illustration of matrix D being split into matrix U
of blocks with unequal sizes

The block calculation procedure Figure 6 in
BSPUS differs from those in BFW by considering the
parameters such as height (the number of rows) and
width (the number of columns) of blocks.

2,2024

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIV3

function proc(Ul, U2, U3) {
for k € {1 ... height(U3)} {
for i € {1 ... height(U1)} {
forj=e {1 ... width(U1)} {
Ulliy] = min(Ul[iy], U2[i,k] + U3[ky])

Figure 6. Pseudocodes of block calculation procedure
in BSPUS

Analysis of algorithms. All presented algorithms
have the same computational complexity — O(N?)
and space complexity — O(N?). However, they have
different performance and energy consumption
characteristics [13—16]. BFW is more advanced than
FW regarding both parameters because of the improved
memory access pattern and spatial data locality. BFW
also provides multiple opportunities for performance
optimizations by using different calculation procedures
for different blocks [7] and effective parallelization using
blocks interdependencies [17].

In addition to benefits of BFW, the BSPUS
provides an opportunity to adapt algorithms execution to
the graph structure by splitting it into blocks based on the
graph clusters [12]. In one of our previous works [10] we
defined requirements for methods of graph clustering and
demonstrated that existing, well-known graph clustering
methods can fulfil these requirement given a sparse
graph.

In this paper, we extend the application of graph
clustering results to improve the methods of solving
the all-pairs shortest path problem. We extend the
BSPUS algorithm to a Blocked all-pairs Shortest Paths
algorithm for Clustered Graphs (BSPCG), which uses
the graph clustering information to reduce the number of
calculations significantly regarding sparse graphs.

Blocked all-pairs Shortest Paths algorithm
for Clustered Graphs

Figure 7 shows a small example graph G of 16
vertices interconnected by 28 edges. Visually it is easy to
spot (Figure 8) three highly interconnected clusters C|,
C, and C, where:

Figure 7. Example graph G of 16 vertices and 28 edges

e C, includes vertices 1, 5, 10, 11 and 13.

e C, includes vertices 3,4, 8,9 and 15.

e (. includes vertices 2, 6, 7, 12 and 16.

These clusters are interconnected by 4 bridge
vertices — 3, 4 (from C,), 10 (from C)) and 16 (from C)),
and 5 directed edges— 10 —» 3,4 — 10,10 > 4,4 — 16
and 16 — 4.

Looking at Figure 8 it can be observed that if we
calculate all shortest paths from vertex 4 to all vertices of

Figure 8. Example graph G split into three clusters C, (red),
C, (orange) and C, (green) interconnected through 4 bridge
vertices — 3, 4, 10 and 16 (in bold)

cluster C|, then all these paths would lay straight through
vertex 10 (which is a bridge vertex of C,). Absolutely
the same is true, if we would like to calculate all shortest
paths from any vertices of C, or C, to vertices of C,.
It remains true, if we calculate all shortest paths from
vertices 1, 5, 11 or 13 into vertices of C, or C,. In context
of the FW, BFW and BSPUS algorithms it means that
when we calculate such paths we don’t need to iterate
over all vertices of the graph, instead, we only need to

CHUCTEMHBIA AHAJIN3 U IPAKJIAJTHASI THOOPMATHKA

2, 2024

SYSTEM ANALYSIS

7

iterate through cluster’s bridge vertices — in our case,
vertex 10.

However, before calculating a path to or from the
cluster through its bridge vertices we must first calculate
all shortest paths within the cluster.

The BSPCG algorithm utilizes the opportunity
to use unequally sized blocks (provided by BSPUS) and
iterative mechanics of the BFW, specifically the part
where in every iteration the diagonal block is calculated
first, which results into calculations of all shortest paths
between its vertices.

The algorithm we propose is as follows:

1. Represent a graph as cost-adjacency matrix
(Figure 9a).

112(3|4|5|6|7|8[9]10(11]12|13]14|15|16
110 1
2 0 1 1
3 011 11 1
4 0 1 1 1
501 0 1 1
6 01 1 1
7 1 0 1
8 1 0
9 1 110
10 111 0]1
111 0
12 1 0
13 1 1 0
14 1 1 1 0
15 1 0
16 1 1 0

a

2. Rearrange its rows and columns to group
clusters around matrix diagonal. Split the matrix into
unequally sized blocks where clusters are diagonal
blocks (Figure 90).

3. Calculate vectors / of block relative indices of
all bridge vertices for every diagonal block (Figure 10).

4. Calculate all-pairs shortest paths using BSPCG
algorithm (Figure 11).

5. Rearrange rows and columns to return them to
their original positions.

In step #2, the algorithm incorporates graph
clusters into the matrix and makes it compatible with the
iterative mechanics of the BFW and BSPUS algorithms
(Figure 3).

,_.
— o= =

—
%)
—

— o |[—=]|~

b

Figure 9. Representation of example graph G with cost-adjacency matrix:
a) is original representations and b) is a cost-adjacency matrix where rows and colums are rearranged to group clusters across
matrix diagonal, splitted into 9 unequally sized blocks (one diagonal block for each cluster)

In step #3, the algorithm transforms information
about bridge vertices into the format compatible with the
algorithm structure where k is not the vertex number in a
graph but a block relative index of it.

v 1]5(10[1113| 3|4 |8|9|15 2|67 |12]14[16
0 1]o 11]1]0 1)1
0 11 01 0111
01 1 0 1 01
1 0 1 10 1 0
1)1 0 ol11 10
1 0
I U l
| [fal [Jo[e[T T T []Js
I I L Iy

Figure 10. [llustration of mapping diagonal block verticies (v)
of graph G to their block relative indices (7) in index vector /

In step #5, the algorithm reverses the changes
made in step #2 and returns the structure of the matrix to
its initial state.

function BSPCG() {
forme {1... M} {
proc(B[m,m], B[m,m], B[m,m]);
forie {l.. M}andi#m{
proc_bridges(B[i,m], B[i,m], B[m,m], I(m));
proc_bridges(B[m,i], B[m,m], B[m,i], I(m));
}
forie {1..M}andi#m {
forje {1...M}andj#m{
proc_bridges (B[ijl, Bli,m], B[m.] , I(m));
}
t
}
}

Figure 11. Pseudocode of BSPCG algorithm with two
calculation procedures — proc to calculate diagonal blocks and
proc_bridges to calculate cross and peripheral blocks

2, 2024

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIN3

In terms of algorithmic complexity, BSPCG has
the same space and worst-case time complexity as FW,
BFW and BSPUS. However, it should be noticed that
the number of computations in BSPCG depends on the
number of bridge vertices between clusters and on the
overall graph size. Therefore, in practical cases, the usage
of BSPCG on sparse graphs can result in a significant
speedup in computations.

Experiments

Environment. We implemented sequential and
parallel versions of the BFW and BSPCG algorithms
using C++ language. The parallel version was
implemented using OpenMP v4.5. The source code was
compiled by GNU GCC compiler v13.2.0 with auto-
vectorization enabled.

Experiments were run on a computer with two
Intel Xeon E5-2620v4 processors (8 cores, 16 hardware
threads, L1 cache 32 KB, L2 cache 256 KB) with shared
inclusive 20 MB L3 cache.

Graphs. We generated four random connected
sparse graphs with predefined cluster configurations
(Table 1).

The sizes of clusters in each of the experimental
graphs have been varied in a certain range, and the share

of bridge vertices in the overall number of vertices was
not high.

Table 1. Specification of experimental graphs that are
randomly generated for a predefined number of clusters

Graph 1 2 3 4
Vertices 4800 4800 9600 9600
Edges 288245 | 153858 | 644198 | 326779
Clusters 20 41 40 80
Bridge vertices 567 620 3452 3550
Bridge edges 621 687 2374 2505

We intentionally generated pairs of graphs split
into different number of clusters but with close number
of bridge vertices to evaluate the influence of our above
formulated assumption on the BSPCG complexity.

Configuration. In all experiments we set block
size of BFW algorithm to 120x120. This size was found
to give the best results on the selected experimental
system [13]. In BSPCG the sizes of the blocks were
derived from the sizes of the clusters.

Results. We performed a set of experiments, each
repeated at least five times. The standard deviation of
the running time has not exceeded the 0.8 % mark. All
results for single- and multi-threaded implementations
are presented in Table 2.

Table 2. Experimental results of single and multi-threaded implementations of the BFW and BSPCG algorithms on
4 experimental graphs of 4800 and 9600 vertices. Time in presented in seconds (s)

Graph 4800 9600 4800 9600
Clusters 20 40 40 80 20 40 40 80
Type Single Thread Multi-Threaded
BFW 38.1 38.4 305.4 305.1 3.2 32 25.1 25.1
BSPCG 8.2 8.7 110.5 115.6 0.8 1.0 9.1 10.4
In the single-thread implementation, BSPCG clustering information. The potential impact of

outperforms BFW by 4.4 to 4.6 times on the graphs of 4800
vertices and by 2.6 to 2.7 times on the graphs of 9600 vertices.
In the multi-threaded implementation, BSPCG outperforms
BFW by 3.2 to 4 times on the graphs of 4800 vertices and by
2.4 to 2.7 times on the graphs of 9600 vertices.

We can observe from the Table 2 that the execution
time of BFIW doesn’t depend on the number or clusters,
nor the number of bridge vertices, nor the overall number
of edges and, in general, isn’t affected by graph structure
but only by the size of the graph. Regarding BSPCG, it
is easy to see that the execution time depends on both the
graph size and the bridge vertex count.

Analysis. One of the potential disadvantages
of BSPCG is the time required to retrieve graph

this depends on the algorithm used to calculate
graph clustering information and can be nullified
if such information exists prior to the execution.

The major advantage of the algorithm is its
ability to reuse the same clustering information
to recalculate shortest paths in the same graph but
with different edge weights (a scenario for an
optimi-zation problem). Besides reusing the same
clustering information, it is also applicable in
scenarios when incremental changes are made to the
graph (eviction or addition of the edge) which can
be reflected on the previously collected clustering
information which then can be used to recalculate
shortest paths.

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

2,2024

SYSTEM ANALYSIS 9

Conclusion using four randomly generated sparse graphs of

different sizes and different cluster configurations

In this paper we have presented a novel Blocked where the BSPCG algorithm outperformed the BFW

all-pairs Shortest Paths algorithm for Clustered Graphs algorithm on all experimental graphs by 2.4 to 4.6 times

(BSPCG) which can efficiently utilize information in both scenarios. The BSPCG algorithm opens a

of graph clustering and significantly speedup possibility for two potential use cases where clustering

the computation of all-pairs shortest paths in large information is not recalculated each time before the

sparse graphs. We implemented the BFW and calculation of shortest paths but instead is either

BSPCG algorithms in single- and multi-threaded maintained or slightly modified based on changes
scenarios. We performed a set of experiments in the graph.

REFERENCES

1. Schrijver A. On the history of the shortest path problem. Documenta Mathematica. 2012. Vol. 17, Ne 1. P. 155-167.

2. Anu P., (Kumar) M.G. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using Parallel Floyd-
Warshall and Parallel Dijkstra Algorithms. Journal of Computing in Civil Engineering. 2013. Vol. 27, Ne 3. P. 263-273.

3. Ridi L., Torrini J., Vicario E. Developing a Scheduler with Difference-Bound Matrices and the Floyd-Warshall Algorithm.
IEEE Software. 2012. Vol. 29, Ne 1. P. 76-83.

4. E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik. 1959. Vol. 1, Ne 1. P. 269-271.

5. Floyd R.W. Algorithm 97: Shortest Path. Communications of the ACM. 1962. Vol. 5, Ne 6. P. 345-.

6. Prihozhy A., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data processing.
Proceedings VIII International conference “Big data and advanced analytics”, Minsk: Bestprint, 2022. P. 56-66.

7. Prihozhy A., Karasik O. Heterogenious blocked all-pairs shortest paths algorithm. System analysis and Applied
Information Science. 2017. Ne 3. P. 68-75.

8. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Experimental
Algorithmics (JEA). 2003. Vol. 8. P. 857-874.

9. Singh A., Mishra P.K. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm. International
Journal of Computer Applications. 2014. Vol. 107, Ne 16. P. 23-27.

10. Karasik O., Prihozhy A. Requirements to methods of graph clustering at the aim of solving the shortest path problem.
Proceedings X International conference “Big data and advanced analytics”, Minsk: BSUIR, 2024. P. 272-279.

11. Prihozhy A., Karasik O. New blocked all-pairs shortest paths algorithms operating on blocks of unequal sizes. System
analysis and applied information science. BNTU, 2023. Ne 4. P. 4-13.

12. Prihozhy A., Karasik O. Blocked algorithm of shortest paths search in sparse graphs partitioned into unequally sized
clusters. Proceedings X International conference “Big data and advanced analytics”, Minsk: BSUIR, 2024. P. 262-271.

13. Karasik O., Prihozhy A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core implementation.
System analysis and applied information science. BNTU, 2022. Ne 3. P. 57-65.

14. Karasik O., Prihozhy A. Parallel blocked all-pair shortest path algorithm: block size effect on cache operation in multi-
core system. Proceedings VIII International conference “Big data and advanced analytics”, Minsk: Bestprint, 2022. P. 28-38.

15. Prihozhy A., Karasik O. Influence of shortest path algorithms on energy consumption of multi-core processors. System
analysis and applied information science. BNTU, 2023. Ne 2. P. 4-12.

16. Karasik O., Prihozhy A. Profiling of energy consumption by algorithms of shortest paths search in large dense graphs.
Proceedings IX International conference “Big data and advanced analytics”, Minsk: BSUIR, 2023. P. 44-50.

17. Karasik O., Prihozhy A. Streaming block-parallel algorithm for finding shortest paths on a graph. Minsk: BSUIR 2018.
Ne2.P. 77-84.

2,2024 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

10 CUCTEMHBIN AHAJIN3

KAPACHK O.H., [TPUXO)KUH A.A.

BJIOYHBIN AJITOPUTM NOUCKA KPATYAUIINX IIYTEX MEXKIY BCEMU
ITAPAMMU BEPIHINH B I'PA®AX CO CJIABO-CBA3AHHBIMU KJTACTEPAMUA

Benopycckuii nayuonanvuwlii mexnuueckuii yHugepcumem
2. Munck, Pecnybnuxa Benapyco

3aoaua noucka kpamuartiwux nymei medxncoy ecemu napamu eepuwut 6 epage (APSP) umeem npumensemcs
8 NIAHUPOBAHUY, KOMMYHUKAYUAX, IKOHOMUKE U MHO2UX Opyeux cghepax. Ha cecoonawinuii denv cywecmeyem pso
aneopummos pewrenus APSP 3a0ay, nauunas c aneopumma @novioa-Yopwenna (Floyd-Warshall) u 3axanuusas 6onee
nPOOSUHYMBIMU U OBICMPBIMU OTOYHBIMU ANOPUMMAMU (Hanpumep, HeOOHOPOOHBIM OIOUHBIM AN2OPUMMOM NOUCKA
kpamuauwux nymeil - Heterogeneous Blocked All-Pairs Shortest Paths), npeonasnauenHblMu 015 MAKCUMANbHO
9pPexmurHo20 UCNONLI0BANUA BLIYUCTUMENLHBIX CPEOCE U 3AGUCUMOCTIEN MeHcOY OAHHBIMU, YUACMEYIOWUMU
6 eviuucienuax. B cmamve npeonacaemcsn noswvui onounvii aneopumm BSPCG noucka kpamuatiwux nymei 8
KAACMepU308anHblX 2papax ¢ 00HONOMOYHOM U MHO2ONOMOYHOM 6APUAHIMAX, KOMOPBIIL UCHOAb3YEm UHDOPMAYUIO O
Kaacmepuzayuu 018 COKpaujerus 00vema 8bluicieHull NoOCpedCmaom NOUCKA Kpamuauux nymetl, npoxooauux epes
2paHuyHble GeEPUIUHBL KIACMEPOs. B cmambe nposedena cepust 8bl4UCIUMENbHbIX IKCNEPUMEHMOE HA0 CHAHOAPMHbIM
onounvim anzopummom BFW u nosvim aneopummom BSPCG ¢ yenvio dokazamenscmea d¢hgpexmusHocmu noucka
Kpamuauuiux nymei 6 clyyae UCHONb306AHUS 2PAHUYHLIX 6EePULUH KAACMEPOS. DKCNepuMeHmbl 6blNOJHANUCH
¢ ucnonvzosanuem epagos paszmepom 4800 u 9600 eepuiun ¢ paziuuHbIMU KIACMEPHLIMU KOHQUSYPAYUIMU.
Dxcnepumenmol npogedensl Ha kKomnvlomepe ¢ 08yms npoyeccopamu Intel Xeon E5-2620v4 (kaosicowiii npoyeccop
sxarouaem 8 usuueckux adep u 16 annapamueix nomokos, a makce k3w L3 obvemom 20 ME). Bo ecex
nposedennbix dxcnepumenmax noguiil areopumm BSPCG npeszowen cmanoapmuwiii aneopumm BFW 6 neckonvko
pas. B oononomounvix cyenapusx BSPCG npodemoncmpuposan yckopenue no cpasienuto ¢ BFW 0o 4.6 pas na
epagax ¢ 4800 sepwunamu u 0o 2.7 paz na epagax ¢ 9600 sepuwunamu. B mroconomounvix cyenapusx BSPCG
makaice npoOeMoOHCmpuposan yckoperue 00 4 pas na epagax ¢ 4800 sepwunamu u do 2,7 pas na epaghax ¢ 9600
sepwunamu. IIpeonodicennviil 8 cmamoe aneoOpumm Modxicem Oblmb UCHONB306AH 6 CYEHAPUSX, 20e UHpopmayus o
KAAcCmepu3ayuy 0Cmaemcs HeUsMeHHOU Uiy U3MEHAemCs He3HAYUMENbHO U MOdcem Obimb NOBMOPHO UCHONb3068AHA
OJ151 MHOJICECMBEHHBIX HAXONCOCHULL 6CeX Kpamuatiumux nymeti 8 epage.

Knioueguvie cnoga: nouck xpamuativiux nymei Ha epage, O10uHbl aneopumm, Kiacmepusayus epaga,
00HONOMOYHOE NPUTLOJCEHUE, MHO2ONOMOYHOE NPUNONHCEHIUE, NPOU3EO0OUMENLHOCT

Karasik Oleg is a Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk,
Belarus, and PhD in Technical Science. His research interests include parallel multithreaded ap-
plications and the parallelization for multicore and multiprocessor systems.

Kapacux O.H., Benyumii WHKEHEp HHOCTPAHHOTO IIPOW3BOACTBEHHOTO YHHTAPHOTO
npennpusatas «ACCODT COJIFOUIEH3» (wacts Coherent Solutions), r. Munck, Bemapycs,
K.T.H. (2019). B chepy ero HaydHbIX HHTEPECOB BXOIST MapajieibHbIC MHOIOIIOTOYHbIC
MPUIOKEHHUS M pacTiapauIenBaHie sl MHOTOSIIEPHBIX X MHOTOTIPOLIECCOPHBIX CHCTEM.

E-mail: karasik.oleg.nikolaevich@gmail.com

Anatoly Prihozhy is full professor at Computer and system software department of Belarus na-
tional technical university, Doctor of Science (1999) and Full Professor (2001). His research in-
terests include programming and hardware description languages, parallelizing compilers, and
computer aided design techniques and tools for software and hardware at logic, high and system
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern
and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer
Academic Publishers, World Scientific and others have published his works.

A.A. ITpuxozxwuii, npodeccop kadenpsr «IIporpammHoe obecrneueHre HHPOPMALTHOHHBIX CHCTEM
W TEXHOJIOTHH» belopycckoro HaIMOHAIBFHOTO TEXHHUYECKOTO yHUBepcuTeTa, A.T.H. (1999),
oM mpogeccopa (2001). B cdepy ero HaydHBIX HHTEPECOB BXOAT SI3BIKM IIPOrPAMMHUPOBAHUS
U OIMUCAaHUs allaparypsbl, pacrnapajuieIMBalOlIue KOMITUIATOPbI, METOAbI W CPEACTBa
ABTOMATH3MPOBAHHOTO MTPOEKTHPOBAHKS IPOIPAMMHBIX H aIllIapaTHBIX CPEACTB Ha JIOTHIECKOM,
BBICOKOM M CHCTEMHOM YPOBHSX, a TAaKXK€ HE MOTHOCTBIO OMPEIEICHHBIX JOTHIECKHX CHCTEM.
Nmeer 6onee 300 mybnukanuii B Boctounoit n 3anannoit EBpone, CIIIA u Kanane. Ero pa6otsr
OITyOJIMKOBAaHBI B TAKNX MUPOBEIX m3zarenbcTBax, kak IEEE, Springer, Kluwer Academic Pub-
lishers, World Scientific u gpyrux.

E-mail: prihozhy@bntu.by

CUCTEMHBIA AHAJIN3 U TIPAKJIATHASI THOOPMATHUKA 2,2024

