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In real-world networks, many problems imply finding the All-Pairs Shortest Paths (APSP) and their dis-
tances in a graph. Solving the large-scale APSP problem on modern muti-processor (multi-core) systems is the key  
for various application domains. The computational cost of solving the problem is high, therefore in many cases 
approximate solutions are considered as acceptable. The blocked APSP algorithms are a promising approach 
which can exploit many processors (cores) and their caches in parallel mode efficiently. At the same time, to our 
best knowledge, all blocked algorithms of the Floyd-Warshall family use blocks of equal sizes. This property limits 
application of the algorithms. In this paper we propose new blocked algorithms which divide the input graph into 
unequal subgraphs and divide the matrix of distances between pairs of vertices into blocks of unequal sizes. The 
algorithms describe the dense subgraphs by the adjacency matrix and describe sparse subgraphs and connections 
between them by the adjacency list. This approach allows the Floyd-Warshall family algorithms to be used together 
with Dijkstra family algorithms. It can be applied to large graphs decomposed into dense (clusters) and sparse 
subgraphs.  A new heterogeneous algorithm can significantly reduce the computation time of blocks depending on 
the block  type and size. The contribution of the paper is the development of a new family of blocked APSP 
algorithms  which can handle blocks of unequal sizes, save and extend the advantages of the state-of-the-art 
algorithms operating on blocks of equal sizes. The proposed algorithms are implemented as single- and multiple-
threaded parallel  applications for multi-core systems.

Keywords: APSP problem, blocked algorithm, unequal sizes of blocks, heterogeneous algorithm, multi-core 
pro-cessor, muti-threaded implementation

Introduction

The problem of finding shortest and longest 
paths between vertices of a large, weighted graph [1–6] 
has many applications, such as Internet route planners, 
traffic road networks, traffic simulations in computer 
networks, car/robot navigation systems, courier-
scheduling optimization, biological information mining, 
web searching, social networks, etc. The interest in this 
problem has significantly increased recently due to the 
emergence of het-erogeneous parallel computing systems 
combining the classical and increasingly powerful CPUs 
with modern powerful hardware acceler-ators [7–9]. The 
computational complexity of shortest paths algorithms 
depends on the graph type [3, 4]: directed or nondirected, 
weighted or not weighted, dense or sparse, what is the 
edge weight (integer, real, positive, negative, etc.). There 
are different formulations of the shortest path problem: 
between two vertices; between the source (sink) and 
each other vertex (single source and single sink – SSSP); 
between each pair of vertices (all pairs shortest paths – 
APSP); all vertices must be in the path or not. For each 
formulation, a set of competitive algorithms has been 
developed.

The focus of this paper is on the all-pairs 
shortest paths problem (APSP) and on the blocked 

algorithms [10, 11] of solving the problem. The state-of-
the-art APSP-algorithms decompose the dense graph into 
equally sized subgraphs and decompose the path distance 
matrix into blocks of the same size. The key contribution 
of the paper is the extension of the algorithms which 
leads to the use of blocks of unequall sizes. The corollary 
of the extension is the emerging possibility of modifying 
the APSP-algorithms which handle efficiently the dense 
graphs to solve the shortest paths problem on sparse 
graphs. 

All-pairs shortest paths algorithms

Let G = (V, E) be a simple directed graph with real 
edge-weights consisting of a set V, |V| = N, of vertices 
numbered 1 through N and a set E of edges. Let W be 
a cost adjacency matrix for G. So, w(i, i) = 0, 1 ≤ i ≤ N;  
w (i, j) is the cost (weight) of edge (i, j) if (i, j) ∈ E and 
w (i, j) = ∞ if i ≠ j and (i, j) ∉ E.

Let dij be a length of a shortest path from vertex 
i to vertex j, and D be a matrix of distances between all 
pairs of vertices i, j ∈ V, i ≠ j. Let P be a matrix whose 
element pij is a vertex that is previous for vertex j in a 
path from i to j. The objective of an APSP-algorithm is to 
compute the D and P matrices for a given graph G. Two 
main families of the algorithms exist to solve the APSP 
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problem: 1) based on the Dijkstra SSSP-algorithm [1];  
2) based on the Floyd-Warshall APSP-algorithm [2].

The first family includes the Dijkstra 
algorithm [1], the Bellman-Ford algorithm [12], the 
Johnson algorithm [13], the Harish and Narayanan 
algorithm [14], and others [15]. The time complexity of 
the Dijkstra algorithm that targets directed graphs with 
positive edge-weights is О(|V|∙lg(|V|) + |E|) for SSSP. 
On graphs of this type, the application of the Dijkstra 
algorithm to each graph vertex solves the APSP problem 
with the time complexity of О(|V|2∙lg(|V| + |V| ∙ |E|). 
The time complexity of the Bellman-Ford algorithm 
for a graph with positive/negative edge-weights is 
О(|V|2 + |V| ∙ |E|) for SSSP. It is higher than the Dijkstra 
algorithm’s time complexity. The Johnson algorithm 
uses the Dijkstra and Bellman-Ford algorithms 
as subroutines and solves the APSP problem with 
negative edge-weights in О(|V|2∙lg(|V| + |V| ∙ |E|) time. 
On sparse graphs, the Johnson algorithm outper-forms 
the APSP algorithms from the Floyd-Warshall family. 
The Harish and Narayanan algorithm is a parallelized 
version combining the characteristics of the Dijkstra 
and Bellman-Ford algorithms. It was developed for the 
implementation on GPUs.

The second family includes among others the 
Floyd-Warshall (FW) algorithm [2], the blocked Floyd-
Warshall algorithm (BFW) proposed in [6, 10, 11] by 
Katz, Venkataraman and others, the graph extension-
based algorithm (GEA) and the heterogeneous blocked 
APSP algorithm (HBAPSP) both proposed by Prihozhy 
and Karasik in [16–18].

The FW algorithm is described with three nested 
loops. It performs a relaxation (min, +) operation on 
elements of matrix D. Its time complexity is Θ(|V|3) 
no matter how many positive/negative edges the graph 
contains. The algorithm is simple in the organization of 
computations. This property is an advantage of the al-
gorithm. The algorithm tries to recalculate all elements 
of matrix D in every iteration of the most outer loop. This 
property is a drawback of the algorithm. The algorithm is 
parallelised by OpenMP [19].

The GEA algorithm calculates the shortest paths 
while stepwise adding vertices to graph G. Therefore, the 
shortest path lengths (real positive/negative numbers) 
are represented by a sequence of matrices D[1×1], …, 
D[|V|×|V|]. The size of D is increased by 1) adding and 
computing a new row and column and 2) recomputing 
previous elements of D. The resynchronization of these 
operations was carried out by formal methods and 
allowed to reduce the number of iterations in loops and to 
improve the spatial and temporal data references locality 
in GEA. As a result, GEA reduces the cache pressure 
in multi-core processors and speeds up the search of 
shortest paths.

The blocked BFW algorithm solves two problems: 
1) localizes the data accesses within blocks (tiles) and to 
increase the efficiency of hierarchical memory operation; 
2) parallelizes computations at the block level. BFW 

divides the graph into subgraphs of equal sizes and splits 
the matrix of shortest paths distances into equally sized 
square blocks (tiles), creating a uniformly blocked matrix 
of the M×M dimension. In each iteration of the most outer 
loop, a diagonal block is calculated first, blocks on the 
cross associated with the diagonal block are calculated 
second (possibly in parallel), and all other peripheral 
blocks are calculated third (possibly in parallel). Eeach 
block is recalculated M times using the FW algorithm. 
BFW is easily parallelised by OpenMP in fork-join style. 
It balances the workload in symmetric multiprocessing 
sharedmemory systems.

Unlike BFW, the HBAPSP algorithm does not 
use FW for recalculating each block. It distinguishes 
the blocks of four types: diagonal, vertical of cross, 
horizontal of cross, and peripheral. It provides a separate 
unique block calculation algorithm of higher performance 
for each block type. The four algorithms account for the 
features of the corresponding block types. They reduce 
the number of iterations in nested loops, exploit the 
references locality of data in CPU caches, and speedup 
the computations. The diagonal blocks are calculated by 
GEA. OpenMP parallelizes HBAPSP at task level in fork-
join style. 

The basic ideas of BFW were fruitfully used in 
several works, which contribute in solving the shortest 
paths problem:

1. A recursive blocked FW algorithm [10].
2. Efficient usage of GPUs [7–9].
3. Solving sparse graph scaling problem [20].
4. Optimization of data allocation in hier-archical 

memory [21].
5. Improving cache performance for APSP [11, 

17, 22].
6. A cooperative threaded algorithm [23, 24].
7. Selection of optimal block-size [25].
8. Reducing energy consumption [26].
9. Shortest paths search dataflow networks of 

actors for multicore implementation [27].
The state-of-the-art blocked shortest paths 

algorithms cannot handle blocks of unequal sizes, 
therefore, cannot decompose graphs into unequally sized 
subgraphs do not match the heterogeneous computing 
systems, etc.

Decomposition of matrix of paths lengths into 
blocks of unequal sizes

In the paper, we propose to decompose the graph 
G into subgraphs and decompose the matrix B into 
blocks of unequal sizes defined by vector S = (S1…SM ) 
(Figure 1). While M blocks are square on the principal 
diagonal of B (block Bii has the Vi × Vi size), all other 
blocks are rectangular in general case (block Bij has the 
Vi × Vj size for i, j = 1…M, i ≠ j). All blocks in row i have 
the height of Vi , and all blocks in column j have the width 
of Vj . Matrix P of previous vertices in the shortest paths 
has the same structure.
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Figure 1. Decomposition of matrix of shortest paths lengths 
into matrix of blocks of unequal sizes

There are several advantages to such an approach. 
It extends the classic blocked shortest paths search 
algorithms to a more general case. The decomposition 
of an input graph into subgraphs can be derived from 
the natural origin structure of the graph. From the 
computational point of view, a large graph can be decom-
posed into subgraphs that have different properties (for 
instance, dense or sparse), which allows to choose the 
most appropriate computational algorithm for each 
subgraph. It also allows to select the most appropriate 
block size (from the hardware perspective) to be used for 
majority of the blocks even if graph isn’t evenly divided 
by it. Unequally sized blocks of both matrices B and P 
can be assigned to processors of different capabilities, 
which enables the speedup on the heterogeneous multi-
processor system while solving the shortest paths prob-
lem.

Extension of blocked Floyd-Warshall  
algorithm to unequal block-sizes

Assuming unequal sizes of blocks, we extend the 
known blocked Floyd-Warshall homogeneous algorithm 
BFW to an allpairs shortest path algorithm BFWUS, 
which can handle a block-matrix B of unequally sized 
blocks. Algorithm 1 describes the BFWUS. In a loop 
along m it recalculates each of M 2 blocks of matrix B, 
therefore, it performs M 3 recalculations of blocks in total.

Algorithm 1: Extension of blocked Floyd-Warshall algo-
rithm accounting for blocks of unequal sizes (BFWUS)

Input: A number N of input graph vertices
Input: A matrix W[N × N] of graph edge weights
Input: A number M of blocks
Input: A vector S = (S1…SM ) of sizes of vertex subsets
Output: A blocked matrix B[M × M] of path distances 
Output: A blocked matrix P[M × M] of previous vertices

in shortest paths 
for i, j ← 1 to N do

if W(i, j) ≠ ∞ then
Pinit(i, j) ← i 

else 

Pinit(i, j) ← undefined
B[M × M] ← W [N × N]     P[M × M] ← Pinit[N × N]
for m ← 1 to M do

BCUS(S, B, P, m, m, m)                            // D0
for v ← 1 to M do

if v ≠ m then
BCUS(S, B, P, v, m, m)                  // C1
BCUS(S, B, P, m, m, v)                  // C2

for v ← 1 to M do
if v ≠ m then

for u ← 1 to M do
if u ≠ m then

BCUS(S, B, P, v, m, u)        // P3
return B, P

Algorithm 2 describes a block-calculation 
algorithm BCUS with the feature of processing blocks of 
unequal sizes. The algorithm’s inputs are three blocks Bv,u, 
Bv,m and Bm,u of which two or three can be identical. The 
sizes of blocks are Sv × Su, Sv × Sm and Sm × Su respectively. 
BCUS consists of three nested loops. It makes Sv × Sm × Su 
attempts to update the values of elements of block Bv,uno 
matter the three blocks are dense or sparse. The order of 
loops is essential. The loop along k must be the outer, it 
cannot be reordered with other loops.

Algorithm 2: Calculation of blocks of unequal sizes 
(BCUS)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices v, m, u of vertex subsets
Output: Recalculated matrix B regarding block Bv,u
Output: Recalculated matrix B regarding block Pv,u

for k ← 1 to Sm do 
for  i ← 1 to Sv  do

for  j ← 1 to Su  do
sum ← Bv,m(i, k) + Bm,u(k, j)
if Bv,u(i, j) > sum then

Bv,u(i, j) ← sum
Pv,u(i, j) ← Pm,u(k, j)

return B, P

There are four calls of BCUS in BFWUS 
(Algorithm 1), which correspond to four types of blocks: 
D0 (diagonal), C1 (vertical in cross), C2 (horizontal in 
cross) and P3 (peripheral). The calls differ each other by 
the actual parameters, of which three first describe the 
vector of sizes and the matrices of blocks, and three oth-
ers select the blocks.

Figure 2 depicts the process of stepwise re-
calculation of unequally sized blocks of the modified 
matrix B in algorithm BFWUS. For matrix B[4 × 4], the 
process consists of four steps. At step 1, block B11 is 
diagonal D0. It is calculated first. Then, blocks B21, B31, 
B41 of type C1 and blocks B12, B13, B14 of type C2 are 
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calculated through B11 possibly in parallel. After that, all 
other blocks of type P3 are calculated possibly in parallel 
through blocks of types C1 and C2: Bij is calculated 

through Bi1 and B1j at i, j = 2, 3, 4. At steps 2, 3 and 4 
blocks B22, B33 and B44 become diagonal of type D0, and 
the calculation procedure repeats in the same manner.

Figure 2. Illustration of BFWUS operation: cross moves from top-left to bottom-right corner of blocked matrix B;  
firstly, block D0 is calculated through itself; secondly, blocks C1 and C2 are calculated through D0; thirdly, blocks P3  

are calculated through C1 and C2; wite arrows in step 2 show data dependence between blocks

Generalization of heterogeneous blocked all-pairs 
shortest paths algorithm

We extend the known blocked heterogene-ous 
algorithm HBAPSP [16–18] to a blocked heterogeneous 
APSP algorithm HBAPSPUS, which can handle 
unequally sized blocks. HBAPSP was proposed as 
a means of consider-ing the features of the four types 
of blocks at the aim of speeding up their computation. 
HBAPSPUS described by Algorithm 3 allows the blocks 
to have unequal sizes, which further extends the property 
of performing computations heterogeneously and extends 
the nonuniformity of the processor’s cores load. Unlike 
BFWUS including four calls of the same algorithm 
BCUS with six input parameters, HBAPSPUS calls four 
different block calculation algorithms: D0US with two 
parameters, C1US with four parameters, C2US with four 
parameters and BCUS with six parameters. The calls 
of different algorithms course different computational 
load. The computational complexity of Algorithm 3 is 
equal to the computational com-plexity of Algorithm 1. 
Moreover, the algorithms have the same parallelization 
potential. The algorithms yield the same values of 
matrix B, although they can yield different values of 
matrix P. The reason is different shortest paths with the 
same length may exist between two vertices.

Algorithm 4 (D0US) generalizes the diagonal 
block calculation algorithm proposed in [16–18]. In 
D0US, bi, j and pi, j are elements of blocks Bm,m and Pm,m. 
The algorithm calculates the diagonal square blocks 
Bm,m and Pm,m. of size [Sm × Sm] through themself without 
involving other blocks. Therefore, it consumes fewer 
amount of data against algorithms calculating blocks of 
other types.

Like in BCUS, the main execution part of D0US 
includes three nested loops, but the loops along i and j 
have an updated iteration scheme producing a smaller 
number of iterations. D0US starts operation from a part 
of Bm,m (Pm,m) having the size [1 × 1] and step-by-step 
increases the size of the part. The loops consequently 

process growing matrices of size [1 × 1], [2 × 2] … 
[Sm × Sm], which support the D0US’s property of temporal 
locality. D0US has up to three times a smaller number 
of executions of the body of the most nested loop than 
BCUS has and reduces the cache pressure.

Algorithm 3: Heterogeneous blocked shortest paths 
search upon unequal block-sizes (HBAPSPUS)

Input: A number N of graph vertices
Input: A matrix W[N × N] of graph edge weights
Input: A number M of blocks
Input: Vector S = (S1…SM ) of sizes of vertex subsets
Output: A blocked matrix B[M × M] of path distances 
Output: A blocked matrix P[M × M] of previous vertices

in shortest paths 
B[M × M] ← W[N × N]
for m ← 1 to M do 

D0US(S, B, P, m)                                     // D0
for v ← 1 to M do

if v ≠ m then
C1US(S, B, P, v, m)                      // C1
C2US(S, B, P, m, v)                      // C2

for v ← 1 to M do
if v ≠ m then

for u ← 1 to M do
if u ≠ m then

BCUS(S, B, P, v, m, u)       // P3
return B, P

Algorithm 5 (C1US) calculates C1-type vertical 
rectangular blocks Bv,m and Pv,m of size [Sv × Sm] of cross 
through themself and blocks Bm,m and Pm,m of size [Sm × Sm] 
without involving third blocks. It generalizes the similar-
purpose algorithm proposed in [18]. In C1US, b1i, j and 
b3k, j (p1i, j and p3k, j ) are elements of blocks Bv,m and Bm,m 
(Pv,m and Pm,m) respectively. The loop along j of C1US has 
the iteration scheme that produces k−1 iteration, which 
is smaller than the number of corresponding iterations 
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in BCA. The two nests of loops consequently process 
matrices of growing size [Sv × 1], [Sv × 2] … [Sv × Sm]. It 
means that C1US has the property of temporal references 
locality, decreases the number of accesses to memory 
and reduces the cache pressure in comparison to BCUS. 
Moreover, the overall number of iterations of the most 
nested loop of C1US is twice smaller than in BCA.

Algorithm 4: Calculation of diagonal blocks of une-
qualsizes (D0US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Index m of vertex subsets
Output: Matrix B recalculated regarding block Bm,m
Output: Matrix P recalculated regarding block Pm,m

for k ← 2 to Sm do
k1 ← k – 1
for i ← 1 to k1 do

for j ← 1 to k1 do
a2 ← bi,k1 + bk1,j 
if bi,j > a2 then 

bi,j ← a2     pi,j ← pk1,j
a0 ← bi,j + bj,k 
if bi,k > a0 then 

bi,k ← a0     pi,k ← pj,k
a1 ← bk,i + bi,j 
if bk,j > a1 then 

bk,j ← a1     pk,j ← pi,j 
k1 ← Sm
for i ← 1 to k1 – 1 do

for j ← 1 to k1 – 1 do
a2 ← bi,k1 + bk1,j 
if bi,j  > a2  then 

bi,j  ← a2     pi,j ← pk1,j
return B, P

Algorithm 6 (C2US) calculates a C2-type 
horizontal rectangular cross blocks Bm,v and Pm,v of size 
[Sm × Sv] through blocks Bm,m and Pm,m of size [Sm × Sm] and 
themself without involving third blocks. It generalizes 
the similar-purpose algorithm proposed in [18]. The loop 
along i of C2US has the iteration scheme that produces 
k−1 iteration. It is less than the number of corresponding 
iterations in BCA. All the loops consequently process 
matrices of growing size [1 × Sv], [2 × Sv] … [Sm × Sv]. Like 
D0US and C1US, algorithm C2US has the property of 
temporal references locality, decreases the number of 
accesses to memory and reduces the cache pressure in 
comparison to BCUS. The overall number of iterations 
of the most nested loop of C2US is twice smaller than 
in BCA.

HBAPSPUS calls the universal block calculation 
algorithm BCUS to compute all peripheral P3 blocks. 
Since the blocks of D0, C1 and C2 types are calculated 
by other algorithms, the three nested loops along k, i and 
j can be reordered arbitrarily in BCUS.

Algorithm 5: Calculating vertical block of cross upon 
unequal block-sizes (C1US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices v and m of vertex subsets
Output: Matrix B recalculated regarding block Bv,m
Output: Matrix P recalculated regarding block Pv,m

B1 ← Bv,m    B3 ← Bm,m    P1 ← Pv,m    P3 ← Pm,m
for k ← 1 to Sm do

k1 ← k–1;
for i ← 1 to Sv do

for j ← 1 to k 1 do
a2 ← b1i,k1 + b3k1,j 
if b1i,j > a2 then 

b1i,j ← a2     p1i,j ← p3k1,j
a0 ← b1i,j + b3j,k 
if b1i,k > a0 then 

b1i,k ← a0     p1i,k ← p3j,k
k1 ← Sm 
for i ← 1 to Sv do

for j ← 1 to k1 ← 1 do
a2 ← b1i,k1 + b3k1,j 
if b1i,j > a2 then 

b1i,j ← a2     p1i,j ← p3k1,j
return B, P

Algorithm 6: Calculating horizontal block of cross upon 
unequal block-sizes (C2US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices m and v of vertex subsets
Output: Matrix B recalculated regarding block Bm,v
Output: Matrix P recalculated regarding block Pm,v

B1 ← Bm,v    B2 ← Bm,m    P1 ← Pm,v    P2 ← Pm,m
for k ← 1 to Sm – 1 do

k1 ← k–1;
for i ← 1 to k1 do

for j ← 1 to Sv do 
a2 ← b2i,k1 + b1k1, j 
if b1i,j > a2 then 

b1i,j ← a2     p1i,j ← p1k1,j
a0 ← b2k,i + b1i,j 
if b1k,j > a0 then

b1k,j ← a0     p1k,j ← p1i,j
k1 ← Sm
for i ← 1 to k1 ← 1 do

for j ← 1 to Sv do
a2 ← b2i,k1 + b1k1,j

if b1i,j > a2 then 
b1i,j ← a2     p1i,j ← p1k1,j

return B, P
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Searching shortest paths in graphs consisting  
of weakly connected dense subgraphs

The all-pairs shortest paths search can be 
significantly speeded up if the large graph is decomposed 
into a set of dense weakly connected subgraphs. In 
this case, we can compute the shortest paths in dense 
subgraphs by using the APSP algorithms on adjacency 
matrix (such as FW, GEA and others), and can compute 
the shortest paths between the dense subgraphs by using 
the single source and single sink algorithms on adjacency 
lists (such that Dijkstra, Harish-Narayanan and others). 
With this idea in mind, we can extend HBAPSPUS by 
considering sparse alternatives of the block calculation 
algorithms C1US, C2US and BCUS.

Let consider an example weighted graph G 
depicted in Figure 3. The graph contains two complete 
directed subgraphs G1 and G2 constructed on two subsets 
{1, 2, 3, 4, 5} and {6, 7, 8} of vertices respectively.

Just arc (3, 8) connects the first subgraph to the 
second one. Just arc (6, 1) connects the second subgraph 
to the first one. Matrix B[2 × 2] is constructed of four 
blocks and is initialized using the rows and columns  
of W: B11 is the crossing of rows 1–5 and columns 
1–5, B22 is the crossing of rows 6–8 and columns 6–8,  
B12 is the crossing of rows 1–5 and columns 6–8, and 
B21 is the crossing of rows 6–8 and columns 1–5. Blocks 
B12 and B21 are sparse since their elements are mostly 
initialized to ∞ (infinity). 

HBAPSPUS updates each block twice. It performs 
eight (min, +) matrix operations (denoted ⊗) on four 
blocks: 

а

b

Figure 3. Example directed graph G consisting of two weakly 
connected complete subgraphs G1 and G2:  

a) graphical view of G; b) matrix W of graph edge weights 
decomposed into four blocks

Algorithm D0US performs operations 1 and 5, 
C1US performs operations 2 and 6, C2US performs 
operations 3 and 7, and BCUS performs operations 
4 and 8. Figure 4 shows matrices B and P which are a 
result of executing HBAPSPUS. Since subgraphs G1 and 
G2 are connected by single arc in each direction, rows 6, 
7 and 8 of block B21 are heavily dependent (differ by a 
constant). Columns 6, 7 and 8 of block B12 are heavily 
dependent too (Figure 4a). Moreover, rows of peripheral 
block P21 are identical; columns of peripheral block P12 
are also identical (Figure 4b). To reduce the algorithms 
runtime and memory consumption, we revise the block 
calculation algorithms C1US, C2US and BCUS and 
improve them with respect to the sparseness of blocks of 
types C1, C2 and P3.

а

b
Figure 4. Matrices of blocks: a) matrix B of shortest paths 

lengths in example graph G; b) matrix P of previous vertices: 
pij is a predecessor of vertex j in a shortest path from i to j

1. B11[5 × 5] ← B11[5 × 5] ⊗ B11[5 × 5]
2. B21[3 × 5] ← B21[3 × 5] ⊗ B11[5 × 5]
3. B12[5 × 3] ← B11[5 × 5] ⊗ B12[5 × 3]
4. B22[3 × 3] ← B21[3 × 5] ⊗ B12[5 × 3]
5. B22[3 × 3] ← B22[3 × 3] ⊗ B22[3 × 3]
6. B12[5 × 3] ← B12[5 × 3] ⊗ B22[3 × 3]
7. B21[3 × 5] ← B22[3 × 3] ⊗ B21[3 × 5]
8. B11[5 × 5] ← B12[5 × 3] ⊗ B21[3 × 5].
Results. We have developed a software in 

C++ which implements on multicore processors 
the homogeneous blocked BFWUS algorithm and 
heterogeneous blocked HBAPSPUS algorithm on 
blocks of unequal sizes. A validation module is a part 
of the software which checks the correctness of blocked 
matrices B and P as compared with the shortest paths 
obtained by the Floyd-Warshall algorithm.
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Conclusion

The paper has shown that the state-of-the-
art blocked all-pairs shortest paths algorithms can be 
extended at the aim of handling the unequally sized dense 
and sparse subgraphs of the large, decomposed graph 

and calculating the unequally sized blocks of matrices 
representing the shortest paths and their lengths. The 
proposed algorithms aim at considering the nature of the 
large graphs and their partitioning into subgraphs as well 
at speeding up the computation of shortest paths between 
vertices on high-performance multi-processor systems.
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ПРИХОЖИЙ А.А., КАРАСИК О.Н.

НОВЫЕ БЛОЧНЫЕ АЛГОРИТМЫ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ 
ВСЕМИ ПАРАМИ ВЕРШИН ГРАФА, РАБОТАЮЩИЕ НА БЛОКАХ НЕРАВНЫХ 

РАЗМЕРОВ

Белорусский национальный технический университет
г. Минск, Республика Беларусь

Многие задачи на реальных сетях предполагают поиск кратчайших путей между всеми парами 
вершин графа и расстояний между вершинами (APSP). Решение крупномасштабной задачи APSP  
на современных многопроцессорных (многоядерных) системах является ключевым для различных областей 
применения. Вычислительные затраты на ее решение высоки, поэтому во многих случаях приемлемыми 
считаются приближенные решения. Перспективным подходом, позволяющим эффективно использовать 
множество процессоров (ядер) и их кэши в параллельном режиме, являются блочные алгоритмы APSP.  
В то же время, насколько нам известно, в блочных алгоритмах семейства Флойда-Уоршалла все блоки  
имеют одинаковый размер. Это свойство ограничивает применение алгоритмов. В статье предлагаются 
новые блочные алгоритмы, которые разбивают граф на неравные подграфы и разбивают матрицу 
расстояний между парами вершин на блоки неравного размера. Алгоритмы описывают плотные  
подграфы матрицей смежности, а разреженные подграфы и связи между ними ‒ списком смежности. 
Такой подход позволяет совместно использовать алгоритмы семейства Флойда-Уоршалла с алгоритмами 
семейства Дейкстры. Он может быть применен к большим графам, декомпозированным на плотные 
(кластеры) и разреженные подграфы. Новый гетерогенный алгоритм может существенно сократить 
время вычисления блоков в зависимости от типа и размера. Вклад статьи заключается в разработке 
нового семейства блочных алгоритмов APSP, которые работают с блоками неравных размеров, сохраняют 
и расширяют преимущества алгоритмов, работающих с блоками равных размеров. Предложенные  
алго-ритмы реализованы в виде одно- и многопоточных параллельных приложений для многоядерных систем.

Ключевые слова: Задача APSP, блочный алгоритм, неравные размеры блоков, разнородный алгоритм, 
многопоточная реализация, многоядерный процессор
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