
УДК 004
DOI: 10.21122/2309-4923-2023-4-4-13

PRIHOZHY A.A., KARASIK O.N.

NEW BLOCKED ALL-PAIRS SHORTEST PATHS ALGORITHMS OPERATING
ON BLOCKS OF UNEQUAL SIZES

Belarusian National Technical University
Minsk, Republic of Belarus

In real-world networks, many problems imply finding the All-Pairs Shortest Paths (APSP) and their dis-
tances in a graph. Solving the large-scale APSP problem on modern muti-processor (multi-core) systems is the key
for various application domains. The computational cost of solving the problem is high, therefore in many cases
approximate solutions are considered as acceptable. The blocked APSP algorithms are a promising approach
which can exploit many processors (cores) and their caches in parallel mode efficiently. At the same time, to our
best knowledge, all blocked algorithms of the Floyd-Warshall family use blocks of equal sizes. This property limits
application of the algorithms. In this paper we propose new blocked algorithms which divide the input graph into
unequal subgraphs and divide the matrix of distances between pairs of vertices into blocks of unequal sizes. The
algorithms describe the dense subgraphs by the adjacency matrix and describe sparse subgraphs and connections
between them by the adjacency list. This approach allows the Floyd-Warshall family algorithms to be used together
with Dijkstra family algorithms. It can be applied to large graphs decomposed into dense (clusters) and sparse
subgraphs. A new heterogeneous algorithm can significantly reduce the computation time of blocks depending on
the block type and size. The contribution of the paper is the development of a new family of blocked APSP
algorithms which can handle blocks of unequal sizes, save and extend the advantages of the state-of-the-art
algorithms operating on blocks of equal sizes. The proposed algorithms are implemented as single- and multiple-
threaded parallel applications for multi-core systems.

Keywords: APSP problem, blocked algorithm, unequal sizes of blocks, heterogeneous algorithm, multi-core
pro-cessor, muti-threaded implementation

Introduction

The problem of finding shortest and longest
paths between vertices of a large, weighted graph [1–6]
has many applications, such as Internet route planners,
traffic road networks, traffic simulations in computer
networks, car/robot navigation systems, courier-
scheduling optimization, biological information mining,
web searching, social networks, etc. The interest in this
problem has significantly increased recently due to the
emergence of het-erogeneous parallel computing systems
combining the classical and increasingly powerful CPUs
with modern powerful hardware acceler-ators [7–9]. The
computational complexity of shortest paths algorithms
depends on the graph type [3, 4]: directed or nondirected,
weighted or not weighted, dense or sparse, what is the
edge weight (integer, real, positive, negative, etc.). There
are different formulations of the shortest path problem:
between two vertices; between the source (sink) and
each other vertex (single source and single sink – SSSP);
between each pair of vertices (all pairs shortest paths –
APSP); all vertices must be in the path or not. For each
formulation, a set of competitive algorithms has been
developed.

The focus of this paper is on the all-pairs
shortest paths problem (APSP) and on the blocked

algorithms [10, 11] of solving the problem. The state-of-
the-art APSP-algorithms decompose the dense graph into
equally sized subgraphs and decompose the path distance
matrix into blocks of the same size. The key contribution
of the paper is the extension of the algorithms which
leads to the use of blocks of unequall sizes. The corollary
of the extension is the emerging possibility of modifying
the APSP-algorithms which handle efficiently the dense
graphs to solve the shortest paths problem on sparse
graphs.

All-pairs shortest paths algorithms

Let G = (V, E) be a simple directed graph with real
edge-weights consisting of a set V, |V| = N, of vertices
numbered 1 through N and a set E of edges. Let W be
a cost adjacency matrix for G. So, w(i, i) = 0, 1 ≤ i ≤ N;
w (i, j) is the cost (weight) of edge (i, j) if (i, j) ∈ E and
w (i, j) = ∞ if i ≠ j and (i, j) ∉ E.

Let dij be a length of a shortest path from vertex
i to vertex j, and D be a matrix of distances between all
pairs of vertices i, j ∈ V, i ≠ j. Let P be a matrix whose
element pij is a vertex that is previous for vertex j in a
path from i to j. The objective of an APSP-algorithm is to
compute the D and P matrices for a given graph G. Two
main families of the algorithms exist to solve the APSP

4 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2023

SYSTEM ANALYSIS 5

4, 2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

problem: 1) based on the Dijkstra SSSP-algorithm [1];
2) based on the Floyd-Warshall APSP-algorithm [2].

The first family includes the Dijkstra
algorithm [1], the Bellman-Ford algorithm [12], the
Johnson algorithm [13], the Harish and Narayanan
algorithm [14], and others [15]. The time complexity of
the Dijkstra algorithm that targets directed graphs with
positive edge-weights is О(|V|∙lg(|V|) + |E|) for SSSP.
On graphs of this type, the application of the Dijkstra
algorithm to each graph vertex solves the APSP problem
with the time complexity of О(|V|2∙lg(|V| + |V| ∙ |E|).
The time complexity of the Bellman-Ford algorithm
for a graph with positive/negative edge-weights is
О(|V|2 + |V| ∙ |E|) for SSSP. It is higher than the Dijkstra
algorithm’s time complexity. The Johnson algorithm
uses the Dijkstra and Bellman-Ford algorithms
as subroutines and solves the APSP problem with
negative edge-weights in О(|V|2∙lg(|V| + |V| ∙ |E|) time.
On sparse graphs, the Johnson algorithm outper-forms
the APSP algorithms from the Floyd-Warshall family.
The Harish and Narayanan algorithm is a parallelized
version combining the characteristics of the Dijkstra
and Bellman-Ford algorithms. It was developed for the
implementation on GPUs.

The second family includes among others the
Floyd-Warshall (FW) algorithm [2], the blocked Floyd-
Warshall algorithm (BFW) proposed in [6, 10, 11] by
Katz, Venkataraman and others, the graph extension-
based algorithm (GEA) and the heterogeneous blocked
APSP algorithm (HBAPSP) both proposed by Prihozhy
and Karasik in [16–18].

The FW algorithm is described with three nested
loops. It performs a relaxation (min, +) operation on
elements of matrix D. Its time complexity is Θ(|V|3)
no matter how many positive/negative edges the graph
contains. The algorithm is simple in the organization of
computations. This property is an advantage of the al-
gorithm. The algorithm tries to recalculate all elements
of matrix D in every iteration of the most outer loop. This
property is a drawback of the algorithm. The algorithm is
parallelised by OpenMP [19].

The GEA algorithm calculates the shortest paths
while stepwise adding vertices to graph G. Therefore, the
shortest path lengths (real positive/negative numbers)
are represented by a sequence of matrices D[1×1], …,
D[|V|×|V|]. The size of D is increased by 1) adding and
computing a new row and column and 2) recomputing
previous elements of D. The resynchronization of these
operations was carried out by formal methods and
allowed to reduce the number of iterations in loops and to
improve the spatial and temporal data references locality
in GEA. As a result, GEA reduces the cache pressure
in multi-core processors and speeds up the search of
shortest paths.

The blocked BFW algorithm solves two problems:
1) localizes the data accesses within blocks (tiles) and to
increase the efficiency of hierarchical memory operation;
2) parallelizes computations at the block level. BFW

divides the graph into subgraphs of equal sizes and splits
the matrix of shortest paths distances into equally sized
square blocks (tiles), creating a uniformly blocked matrix
of the M×M dimension. In each iteration of the most outer
loop, a diagonal block is calculated first, blocks on the
cross associated with the diagonal block are calculated
second (possibly in parallel), and all other peripheral
blocks are calculated third (possibly in parallel). Eeach
block is recalculated M times using the FW algorithm.
BFW is easily parallelised by OpenMP in fork-join style.
It balances the workload in symmetric multiprocessing
sharedmemory systems.

Unlike BFW, the HBAPSP algorithm does not
use FW for recalculating each block. It distinguishes
the blocks of four types: diagonal, vertical of cross,
horizontal of cross, and peripheral. It provides a separate
unique block calculation algorithm of higher performance
for each block type. The four algorithms account for the
features of the corresponding block types. They reduce
the number of iterations in nested loops, exploit the
references locality of data in CPU caches, and speedup
the computations. The diagonal blocks are calculated by
GEA. OpenMP parallelizes HBAPSP at task level in fork-
join style.

The basic ideas of BFW were fruitfully used in
several works, which contribute in solving the shortest
paths problem:

1. A recursive blocked FW algorithm [10].
2. Efficient usage of GPUs [7–9].
3. Solving sparse graph scaling problem [20].
4. Optimization of data allocation in hier-archical

memory [21].
5. Improving cache performance for APSP [11,

17, 22].
6. A cooperative threaded algorithm [23, 24].
7. Selection of optimal block-size [25].
8. Reducing energy consumption [26].
9. Shortest paths search dataflow networks of

actors for multicore implementation [27].
The state-of-the-art blocked shortest paths

algorithms cannot handle blocks of unequal sizes,
therefore, cannot decompose graphs into unequally sized
subgraphs do not match the heterogeneous computing
systems, etc.

Decomposition of matrix of paths lengths into
blocks of unequal sizes

In the paper, we propose to decompose the graph
G into subgraphs and decompose the matrix B into
blocks of unequal sizes defined by vector S = (S1…SM )
(Figure 1). While M blocks are square on the principal
diagonal of B (block Bii has the Vi × Vi size), all other
blocks are rectangular in general case (block Bij has the
Vi × Vj size for i, j = 1…M, i ≠ j). All blocks in row i have
the height of Vi , and all blocks in column j have the width
of Vj . Matrix P of previous vertices in the shortest paths
has the same structure.

6 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2023

Figure 1. Decomposition of matrix of shortest paths lengths
into matrix of blocks of unequal sizes

There are several advantages to such an approach.
It extends the classic blocked shortest paths search
algorithms to a more general case. The decomposition
of an input graph into subgraphs can be derived from
the natural origin structure of the graph. From the
computational point of view, a large graph can be decom-
posed into subgraphs that have different properties (for
instance, dense or sparse), which allows to choose the
most appropriate computational algorithm for each
subgraph. It also allows to select the most appropriate
block size (from the hardware perspective) to be used for
majority of the blocks even if graph isn’t evenly divided
by it. Unequally sized blocks of both matrices B and P
can be assigned to processors of different capabilities,
which enables the speedup on the heterogeneous multi-
processor system while solving the shortest paths prob-
lem.

Extension of blocked Floyd-Warshall
algorithm to unequal block-sizes

Assuming unequal sizes of blocks, we extend the
known blocked Floyd-Warshall homogeneous algorithm
BFW to an allpairs shortest path algorithm BFWUS,
which can handle a block-matrix B of unequally sized
blocks. Algorithm 1 describes the BFWUS. In a loop
along m it recalculates each of M 2 blocks of matrix B,
therefore, it performs M 3 recalculations of blocks in total.

Algorithm 1: Extension of blocked Floyd-Warshall algo-
rithm accounting for blocks of unequal sizes (BFWUS)

Input: A number N of input graph vertices
Input: A matrix W[N × N] of graph edge weights
Input: A number M of blocks
Input: A vector S = (S1…SM ) of sizes of vertex subsets
Output: A blocked matrix B[M × M] of path distances
Output: A blocked matrix P[M × M] of previous vertices

in shortest paths
for i, j ← 1 to N do

if W(i, j) ≠ ∞ then
Pinit(i, j) ← i

else

Pinit(i, j) ← undefined
B[M × M] ← W [N × N] P[M × M] ← Pinit[N × N]
for m ← 1 to M do

BCUS(S, B, P, m, m, m) // D0
for v ← 1 to M do

if v ≠ m then
BCUS(S, B, P, v, m, m) // C1
BCUS(S, B, P, m, m, v) // C2

for v ← 1 to M do
if v ≠ m then

for u ← 1 to M do
if u ≠ m then

BCUS(S, B, P, v, m, u) // P3
return B, P

Algorithm 2 describes a block-calculation
algorithm BCUS with the feature of processing blocks of
unequal sizes. The algorithm’s inputs are three blocks Bv,u,
Bv,m and Bm,u of which two or three can be identical. The
sizes of blocks are Sv × Su, Sv × Sm and Sm × Su respectively.
BCUS consists of three nested loops. It makes Sv × Sm × Su
attempts to update the values of elements of block Bv,uno
matter the three blocks are dense or sparse. The order of
loops is essential. The loop along k must be the outer, it
cannot be reordered with other loops.

Algorithm 2: Calculation of blocks of unequal sizes
(BCUS)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices v, m, u of vertex subsets
Output: Recalculated matrix B regarding block Bv,u
Output: Recalculated matrix B regarding block Pv,u

for k ← 1 to Sm do
for i ← 1 to Sv do

for j ← 1 to Su do
sum ← Bv,m(i, k) + Bm,u(k, j)
if Bv,u(i, j) > sum then

Bv,u(i, j) ← sum
Pv,u(i, j) ← Pm,u(k, j)

return B, P

There are four calls of BCUS in BFWUS
(Algorithm 1), which correspond to four types of blocks:
D0 (diagonal), C1 (vertical in cross), C2 (horizontal in
cross) and P3 (peripheral). The calls differ each other by
the actual parameters, of which three first describe the
vector of sizes and the matrices of blocks, and three oth-
ers select the blocks.

Figure 2 depicts the process of stepwise re-
calculation of unequally sized blocks of the modified
matrix B in algorithm BFWUS. For matrix B[4 × 4], the
process consists of four steps. At step 1, block B11 is
diagonal D0. It is calculated first. Then, blocks B21, B31,
B41 of type C1 and blocks B12, B13, B14 of type C2 are

SYSTEM ANALYSIS 7

4, 2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

calculated through B11 possibly in parallel. After that, all
other blocks of type P3 are calculated possibly in parallel
through blocks of types C1 and C2: Bij is calculated

through Bi1 and B1j at i, j = 2, 3, 4. At steps 2, 3 and 4
blocks B22, B33 and B44 become diagonal of type D0, and
the calculation procedure repeats in the same manner.

Figure 2. Illustration of BFWUS operation: cross moves from top-left to bottom-right corner of blocked matrix B;
firstly, block D0 is calculated through itself; secondly, blocks C1 and C2 are calculated through D0; thirdly, blocks P3

are calculated through C1 and C2; wite arrows in step 2 show data dependence between blocks

Generalization of heterogeneous blocked all-pairs
shortest paths algorithm

We extend the known blocked heterogene-ous
algorithm HBAPSP [16–18] to a blocked heterogeneous
APSP algorithm HBAPSPUS, which can handle
unequally sized blocks. HBAPSP was proposed as
a means of consider-ing the features of the four types
of blocks at the aim of speeding up their computation.
HBAPSPUS described by Algorithm 3 allows the blocks
to have unequal sizes, which further extends the property
of performing computations heterogeneously and extends
the nonuniformity of the processor’s cores load. Unlike
BFWUS including four calls of the same algorithm
BCUS with six input parameters, HBAPSPUS calls four
different block calculation algorithms: D0US with two
parameters, C1US with four parameters, C2US with four
parameters and BCUS with six parameters. The calls
of different algorithms course different computational
load. The computational complexity of Algorithm 3 is
equal to the computational com-plexity of Algorithm 1.
Moreover, the algorithms have the same parallelization
potential. The algorithms yield the same values of
matrix B, although they can yield different values of
matrix P. The reason is different shortest paths with the
same length may exist between two vertices.

Algorithm 4 (D0US) generalizes the diagonal
block calculation algorithm proposed in [16–18]. In
D0US, bi, j and pi, j are elements of blocks Bm,m and Pm,m.
The algorithm calculates the diagonal square blocks
Bm,m and Pm,m. of size [Sm × Sm] through themself without
involving other blocks. Therefore, it consumes fewer
amount of data against algorithms calculating blocks of
other types.

Like in BCUS, the main execution part of D0US
includes three nested loops, but the loops along i and j
have an updated iteration scheme producing a smaller
number of iterations. D0US starts operation from a part
of Bm,m (Pm,m) having the size [1 × 1] and step-by-step
increases the size of the part. The loops consequently

process growing matrices of size [1 × 1], [2 × 2] …
[Sm × Sm], which support the D0US’s property of temporal
locality. D0US has up to three times a smaller number
of executions of the body of the most nested loop than
BCUS has and reduces the cache pressure.

Algorithm 3: Heterogeneous blocked shortest paths
search upon unequal block-sizes (HBAPSPUS)

Input: A number N of graph vertices
Input: A matrix W[N × N] of graph edge weights
Input: A number M of blocks
Input: Vector S = (S1…SM ) of sizes of vertex subsets
Output: A blocked matrix B[M × M] of path distances
Output: A blocked matrix P[M × M] of previous vertices

in shortest paths
B[M × M] ← W[N × N]
for m ← 1 to M do

D0US(S, B, P, m) // D0
for v ← 1 to M do

if v ≠ m then
C1US(S, B, P, v, m) // C1
C2US(S, B, P, m, v) // C2

for v ← 1 to M do
if v ≠ m then

for u ← 1 to M do
if u ≠ m then

BCUS(S, B, P, v, m, u) // P3
return B, P

Algorithm 5 (C1US) calculates C1-type vertical
rectangular blocks Bv,m and Pv,m of size [Sv × Sm] of cross
through themself and blocks Bm,m and Pm,m of size [Sm × Sm]
without involving third blocks. It generalizes the similar-
purpose algorithm proposed in [18]. In C1US, b1i, j and
b3k, j (p1i, j and p3k, j ) are elements of blocks Bv,m and Bm,m
(Pv,m and Pm,m) respectively. The loop along j of C1US has
the iteration scheme that produces k−1 iteration, which
is smaller than the number of corresponding iterations

8 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2023

in BCA. The two nests of loops consequently process
matrices of growing size [Sv × 1], [Sv × 2] … [Sv × Sm]. It
means that C1US has the property of temporal references
locality, decreases the number of accesses to memory
and reduces the cache pressure in comparison to BCUS.
Moreover, the overall number of iterations of the most
nested loop of C1US is twice smaller than in BCA.

Algorithm 4: Calculation of diagonal blocks of une-
qualsizes (D0US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Index m of vertex subsets
Output: Matrix B recalculated regarding block Bm,m
Output: Matrix P recalculated regarding block Pm,m

for k ← 2 to Sm do
k1 ← k – 1
for i ← 1 to k1 do

for j ← 1 to k1 do
a2 ← bi,k1 + bk1,j
if bi,j > a2 then

bi,j ← a2 pi,j ← pk1,j
a0 ← bi,j + bj,k
if bi,k > a0 then

bi,k ← a0 pi,k ← pj,k
a1 ← bk,i + bi,j
if bk,j > a1 then

bk,j ← a1 pk,j ← pi,j
k1 ← Sm
for i ← 1 to k1 – 1 do

for j ← 1 to k1 – 1 do
a2 ← bi,k1 + bk1,j
if bi,j > a2 then

bi,j ← a2 pi,j ← pk1,j
return B, P

Algorithm 6 (C2US) calculates a C2-type
horizontal rectangular cross blocks Bm,v and Pm,v of size
[Sm × Sv] through blocks Bm,m and Pm,m of size [Sm × Sm] and
themself without involving third blocks. It generalizes
the similar-purpose algorithm proposed in [18]. The loop
along i of C2US has the iteration scheme that produces
k−1 iteration. It is less than the number of corresponding
iterations in BCA. All the loops consequently process
matrices of growing size [1 × Sv], [2 × Sv] … [Sm × Sv]. Like
D0US and C1US, algorithm C2US has the property of
temporal references locality, decreases the number of
accesses to memory and reduces the cache pressure in
comparison to BCUS. The overall number of iterations
of the most nested loop of C2US is twice smaller than
in BCA.

HBAPSPUS calls the universal block calculation
algorithm BCUS to compute all peripheral P3 blocks.
Since the blocks of D0, C1 and C2 types are calculated
by other algorithms, the three nested loops along k, i and
j can be reordered arbitrarily in BCUS.

Algorithm 5: Calculating vertical block of cross upon
unequal block-sizes (C1US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices v and m of vertex subsets
Output: Matrix B recalculated regarding block Bv,m
Output: Matrix P recalculated regarding block Pv,m

B1 ← Bv,m B3 ← Bm,m P1 ← Pv,m P3 ← Pm,m
for k ← 1 to Sm do

k1 ← k–1;
for i ← 1 to Sv do

for j ← 1 to k 1 do
a2 ← b1i,k1 + b3k1,j
if b1i,j > a2 then

b1i,j ← a2 p1i,j ← p3k1,j
a0 ← b1i,j + b3j,k
if b1i,k > a0 then

b1i,k ← a0 p1i,k ← p3j,k
k1 ← Sm
for i ← 1 to Sv do

for j ← 1 to k1 ← 1 do
a2 ← b1i,k1 + b3k1,j
if b1i,j > a2 then

b1i,j ← a2 p1i,j ← p3k1,j
return B, P

Algorithm 6: Calculating horizontal block of cross upon
unequal block-sizes (C2US)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M × M] of path distances
Input: A blocked matrix P[M × M] of previous vertices

in shortest paths
Input: Indices m and v of vertex subsets
Output: Matrix B recalculated regarding block Bm,v
Output: Matrix P recalculated regarding block Pm,v

B1 ← Bm,v B2 ← Bm,m P1 ← Pm,v P2 ← Pm,m
for k ← 1 to Sm – 1 do

k1 ← k–1;
for i ← 1 to k1 do

for j ← 1 to Sv do
a2 ← b2i,k1 + b1k1, j
if b1i,j > a2 then

b1i,j ← a2 p1i,j ← p1k1,j
a0 ← b2k,i + b1i,j
if b1k,j > a0 then

b1k,j ← a0 p1k,j ← p1i,j
k1 ← Sm
for i ← 1 to k1 ← 1 do

for j ← 1 to Sv do
a2 ← b2i,k1 + b1k1,j

if b1i,j > a2 then
b1i,j ← a2 p1i,j ← p1k1,j

return B, P

SYSTEM ANALYSIS 9

4, 2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Searching shortest paths in graphs consisting
of weakly connected dense subgraphs

The all-pairs shortest paths search can be
significantly speeded up if the large graph is decomposed
into a set of dense weakly connected subgraphs. In
this case, we can compute the shortest paths in dense
subgraphs by using the APSP algorithms on adjacency
matrix (such as FW, GEA and others), and can compute
the shortest paths between the dense subgraphs by using
the single source and single sink algorithms on adjacency
lists (such that Dijkstra, Harish-Narayanan and others).
With this idea in mind, we can extend HBAPSPUS by
considering sparse alternatives of the block calculation
algorithms C1US, C2US and BCUS.

Let consider an example weighted graph G
depicted in Figure 3. The graph contains two complete
directed subgraphs G1 and G2 constructed on two subsets
{1, 2, 3, 4, 5} and {6, 7, 8} of vertices respectively.

Just arc (3, 8) connects the first subgraph to the
second one. Just arc (6, 1) connects the second subgraph
to the first one. Matrix B[2 × 2] is constructed of four
blocks and is initialized using the rows and columns
of W: B11 is the crossing of rows 1–5 and columns
1–5, B22 is the crossing of rows 6–8 and columns 6–8,
B12 is the crossing of rows 1–5 and columns 6–8, and
B21 is the crossing of rows 6–8 and columns 1–5. Blocks
B12 and B21 are sparse since their elements are mostly
initialized to ∞ (infinity).

HBAPSPUS updates each block twice. It performs
eight (min, +) matrix operations (denoted ⊗) on four
blocks:

а

b

Figure 3. Example directed graph G consisting of two weakly
connected complete subgraphs G1 and G2:

a) graphical view of G; b) matrix W of graph edge weights
decomposed into four blocks

Algorithm D0US performs operations 1 and 5,
C1US performs operations 2 and 6, C2US performs
operations 3 and 7, and BCUS performs operations
4 and 8. Figure 4 shows matrices B and P which are a
result of executing HBAPSPUS. Since subgraphs G1 and
G2 are connected by single arc in each direction, rows 6,
7 and 8 of block B21 are heavily dependent (differ by a
constant). Columns 6, 7 and 8 of block B12 are heavily
dependent too (Figure 4a). Moreover, rows of peripheral
block P21 are identical; columns of peripheral block P12
are also identical (Figure 4b). To reduce the algorithms
runtime and memory consumption, we revise the block
calculation algorithms C1US, C2US and BCUS and
improve them with respect to the sparseness of blocks of
types C1, C2 and P3.

а

b
Figure 4. Matrices of blocks: a) matrix B of shortest paths

lengths in example graph G; b) matrix P of previous vertices:
pij is a predecessor of vertex j in a shortest path from i to j

1. B11[5 × 5] ← B11[5 × 5] ⊗ B11[5 × 5]
2. B21[3 × 5] ← B21[3 × 5] ⊗ B11[5 × 5]
3. B12[5 × 3] ← B11[5 × 5] ⊗ B12[5 × 3]
4. B22[3 × 3] ← B21[3 × 5] ⊗ B12[5 × 3]
5. B22[3 × 3] ← B22[3 × 3] ⊗ B22[3 × 3]
6. B12[5 × 3] ← B12[5 × 3] ⊗ B22[3 × 3]
7. B21[3 × 5] ← B22[3 × 3] ⊗ B21[3 × 5]
8. B11[5 × 5] ← B12[5 × 3] ⊗ B21[3 × 5].
Results. We have developed a software in

C++ which implements on multicore processors
the homogeneous blocked BFWUS algorithm and
heterogeneous blocked HBAPSPUS algorithm on
blocks of unequal sizes. A validation module is a part
of the software which checks the correctness of blocked
matrices B and P as compared with the shortest paths
obtained by the Floyd-Warshall algorithm.

10 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2023

Conclusion

The paper has shown that the state-of-the-
art blocked all-pairs shortest paths algorithms can be
extended at the aim of handling the unequally sized dense
and sparse subgraphs of the large, decomposed graph

and calculating the unequally sized blocks of matrices
representing the shortest paths and their lengths. The
proposed algorithms aim at considering the nature of the
large graphs and their partitioning into subgraphs as well
at speeding up the computation of shortest paths between
vertices on high-performance multi-processor systems.

REFERENCES

1. Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1(1), pp. 269–271.
2. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5(6), p. 345.
3. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of Shortest Path

Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7, no. 1&2, pp. 20–30.
4. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv:

1705.02044v1 [cs.DS], 4 May 2017, 26 p.
5. Prihozhy А., Mlynek D. Design of parallel implementations by means of abstract dynamic critical path based pro-

filing of complex sequential algorithms. Integrated Circuit and System Design. Power and Timing Modeling, Optimization and
Simulation: 16th International Workshop, PATMOS 2006, Montpellier, France, September 13-15, 2006, pp. 1–11.

6. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthesis and Optimization from Branched
Feedback Dataflow Programs. Journal of Signal Processing Systems, Springer Nature, 2020, vol. 92, pp. 1091–1099.
doi: 10.1007/s11265-020-01568-5

7. Katz G.J., Kider J.T. All-pairs shortest-paths for large graphs on the GPU. GH’08: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47–55.

8. Ortega-Arranz H., Torres Y., Llanos D.R, and Escribano A.G. The all-pair shortest-path problem in shared-memory
heterogeneous systems. High-Performance Computing on Complex Environments, 2013, pp. 283–299.

9. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU computation of all-pairs
shortest paths. IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 360–369.

10. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Exper-
imental Algorithmics (JEA), 2003, vol. 8, pp. 857–874.

11. Park J.S., Penner M., and Prasanna V.K. Optimizing graph algorithms for improved cache performance. IEEE
Trans. on Parallel and Distributed Systems, 2004, no. 15(9), pp.769–782.

12. Bellman R.E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87–90.
13. Johnson D.B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24 no. 1, pp. 1 – 13.
14. Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU using CUDA. International conference on

high-performance computing. Springer, 2007, pp. 197–208.
15. Meyer U. and Sanders P. Δ-stepping: a parallelizable shortest path algorithm. Journal of Algorithms, vol. 49, no. 1,

2003, pp. 114–152.
16. Prihozhy A.A., Karasik O.N. Heterogeneous blocked all-pairs shortest paths algorithm. System analysis and applied

information science, 2017, no. 3, pp. 68–75. (In Russian).
17. Prihozhy А.A., Karasik O.N. Inference of shortest path algorithms with spatial and temporal locality for big data

processing. [Big Data and Advanced Analytics: proceedings of VIII international conference]. Minsk, Bestprint Publ., 2022,
pp. 56–66.

18. Prihozhy А.А., Karasik O.N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm. Proceedings
of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1(266), pp. 77–83. doi: 10.52065/2520-6141-2023-266-1-13

19. Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path Algorithm in
OpenMP 3.0. 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013). Los Angeles, CA,
July 1–2, 2013, pp. 109–112.

20. Yang S., Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse Graph. ICS '23:
Proceedings of the 37th International Conference on Supercomputing, 2023, pp. 277–288.

21. Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all-pairs shortest paths algorithms.
System analysis and applied information science, 2019, no. 4, pp. 10–18.

22. Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths algorithms. System
analysis and applied information science, 2021, no. 3, pp. 40–50. doi: 10.21122/2309-4923-2021-3-40-50

23. Prihozhy A.A., Karasik O.N. Cooperative block-parallel algorithms for task execution on multi-core system. System
analysis and applied information science, 2015, no. 2, pp. 10–18.

24. Karasik O.N., Prihozhy A.A. Threaded block-parallel algorithm for finding the shortest paths on graph. Doklady
BGUIR, 2018, no. 2, pp. 77–84. (In Russian).

SYSTEM ANALYSIS 11

4, 2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

25. Karasik O.N., Prihozhy A.A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core imple-
mentation. System analysis and applied information science, 2022, no. 3, pp. 57–65. doi: 10.21122/2309-4923-2022-3-57-65

26. Prihozhy A.A., Karasik O.N. Influence of shortest path algorithms on energy consumption of multi-core processors.
System analysis and applied information science, 2023, no. 2, pp. 4–12. doi: 10.21122/2309-4923-2023-2-4-12

27. Prihozhy A.A. Generation of shortest path search dataflow networks of actors for parallel multicore implementation.
Informatics, 2023, vol. 20, no. 2, pp. 65–84. doi: 10.37661/1816-0301-2023-20-2-65-84

ЛИТЕРАТУРА

1. Dijkstra E.W. A note on two problems in connexion with graphs. Numerische Mathematik, 1959, vol. 1(1), pp. 269–271.
2. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, no. 5(6), p. 345.
3. Glabowski M., Musznicki B., Nowak P. and Zwierzykowski P. Review and Performance Analysis of Shortest Path

Problem Solving Algorithms. International Journal on Advances in Software, 2014, vol. 7, no. 1&2, pp. 20–30.
4. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms. ArXiv:

1705.02044v1 [cs.DS], 4 May 2017, 26 p.
5. Prihozhy А., Mlynek D. Design of parallel implementations by means of abstract dynamic critical path based pro-

filing of complex sequential algorithms. Integrated Circuit and System Design. Power and Timing Modeling, Optimization and
Simulation: 16th International Workshop, PATMOS 2006, Montpellier, France, September 13-15, 2006, pp. 1–11.

6. Prihozhy A.A., Casale-Brunet S., Bezati E., Mattavelli M. Pipeline Synthesis and Optimization from Branched
Feedback Dataflow Programs. Journal of Signal Processing Systems, Springer Nature, 2020, vol. 92, pp. 1091–1099.
doi: 10.1007/s11265-020-01568-5

7. Katz G.J., Kider J.T. All-pairs shortest-paths for large graphs on the GPU. GH’08: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware. ACM, 2008, pp. 47–55.

8. Ortega-Arranz H., Torres Y., Llanos D.R. and Escribano A.G. The all-pair shortest-path problem in shared-memory
heterogeneous systems. High-Performance Computing on Complex Environments, 2013, pp. 283–299.

9. Djidjev H., Thulasidasan S., Chapuis G., Andonov R. and Lavenier D. Efficient multi-GPU computation of all-pairs
shortest paths. IEEE 28th International Parallel and Distributed Processing Symposium. IEEE, 2014, pp. 360–369.

10. Venkataraman G., Sahni S., Mukhopadhyaya S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of Exper-
imental Algorithmics (JEA), 2003, vol. 8, pp. 857–874.

11. Park J.S., Penner M. and Prasanna V.K. Optimizing graph algorithms for improved cache performance. IEEE Trans.
on Parallel and Distributed Systems, 2004, no. 15(9), pp.769–782.

12. Bellman R.E. On a routing problem. Quarterly of Applied Mathematics, 1958, vol. 16, no. 1, pp. 87–90.
13. Johnson D.B. Efficient Algorithms for Shortest Paths in Sparse Networks. J. ACM, 1977, vol. 24, no. 1, pp. 1–13.
14. Harish P., Narayanan P.J. Accelerating large graph algorithms on the GPU using CUDA. International conference on

high-performance computing. Springer, 2007, pp. 197–208.
15. Meyer U., Sanders P. Δ-stepping: a parallelizable shortest path algorithm. Journal of Algorithms, vol. 49, no. 1, 2003,

pp. 114–152.
16. Прихожий, А.А. Разнородный блочный алгоритм поиска кратчайших путей между всеми парами вершин гра-

фа / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика. – 2017. – № 3. – С. 68–75.
17. Prihozhy А., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data proces-

sing // Сборник материалов VIII Международной научно-практической конференции. – Минск: Беспринт, 2022. – С. 56–66.
18. Прихожий, А.А. Усовершенствованный разнородный блочно-параллельный алгоритм поиска кратчайших

путей на графе / А.А. Прихожий, О.Н. Карасик // Труды БГТУ. Сер. 3, Физико-математические науки и информатика. –
2023. – № 1(266). – С. 77–83. doi: 10.52065/2520-6141-20

19. Albalawi E., Thulasiraman P., Thulasiram R. Task Level Parallelization of All Pair Shortest Path Algorithm in
OpenMP 3.0. 2nd International Conference on Advances in Computer Science and Engineering (CSE 2013). Los Angeles, CA,
July 1–2, 2013, pp. 109–112.

20. Yang S., Liu X., Wang Y., He X., Tan G. Fast All-Pairs Shortest Paths Algorithm in Large Sparse Graph. ICS '23:
Proceedings of the 37th International Conference on Supercomputing, 2023, pp. 277–288.

21. Прихожий, А.А. Моделирование кэш прямого отображения и ассоциативных кэш на алгоритмах поиска крат-
чайших путей на графе / А.А. Прихожий // Системный анализ и прикладная информатика. – 2019. – № 4. – С. 10–18.

22. Прихожий, А.А. Оптимизация размещения данных в иерархической памяти для блочных алгоритмов по-
иска кратчайших путей / А.А. Прихожий // Системный анализ и прикладная информатика. – 2021. – № 3. – С. 40–50.
doi: 10.21122/2309-4923-2021-3-40-50

23. Прыхожы, А.А. Кааператыўныя блочна-паралельныя алгарытмы рашэння задач на шмат'ядравых сістэмах /
А.А. Прыхожы, А.М. Карасiк // Системный анализ и прикладная информатика. – 2015. – № 2. – С. 10–18.

24. Карасик, О.Н. Потоковый блочно-параллельный алгоритм поиска кратчайших путей на графе / О.Н. Карасик,
А.А. Прихожий // Доклады БГУИР. – 2018. – № 2. – С. 77–84.

12 СИСТЕМНЫЙ АНАЛИЗ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2023

25. Карасик, О.Н. Настройка блочно-параллельного алгоритма поиска кратких путей на эффективную много-я-
дерную реализацию / О.Н. Карасик, А.А. Прихожий // Системный анализ и прикладная информатика. – 2022. – № 3. –
С. 57–65. doi: 10.21122/2309-4923-2022-3-57-65

26. Прихожий, А.А. Влияние алгоритмов поиска кратчайших путей на энергопотребление многоядерных
про-цессоров / А.А. Прихожий, О.Н. Карасик // Системный анализ и прикладная информатика. – 2023. – № 2. – С. 4–12.
doi: 10.21122/2309-4923-2023-2-4-12

27. Прихожий, А.А. Генерация потоковых сетей акторов поиска кратчайших путей для параллельной многоядер-
ной реализации / А.А. Прихожий // Информатика. – 2023. – Т. 20. – № 2. – С. 65–84. doi: 10.37661/1816-0301-2023-20-2-65-84

Anatoly Prihozhy is full professor at Computer and system software department of Belarus na-
tional technical university, D. Sc. (Eng) (1999) and Full Professor (2001). His research interests
include programming languages, hardware description languages, parallelizing compilers, and
computer aided design techniques and tools for software and hardware at logic, high and system
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern
and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer
Academic Publishers, World Scientific and others have published his works.

Прихожий А.А., профессор кафедры «Программное обеспечение информационных систем
и технологий» Белорусского национального технического университета, д.т.н. (1999),
диплом профессора (2001). В сферу его научных интересов входят языки программирования
и описания аппаратуры, распараллеливающие компиляторы, методы и средства
автоматизированного проектирования программных и аппаратных средств на логическом,
высоком и системном уровнях, а также не полностью определенных логических систем.
Имеет более 300 публикаций в Восточной и Западной Европе, США и Канаде. Его работы
опубликованы в таких мировых издательствах, как IEEE, Springer, Kluwer Academic Pub-
lishers, World Scientific и других.

E-mail: prihozhy@bntu.by

ПРИХОЖИЙ А.А., КАРАСИК О.Н.

НОВЫЕ БЛОЧНЫЕ АЛГОРИТМЫ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ МЕЖДУ
ВСЕМИ ПАРАМИ ВЕРШИН ГРАФА, РАБОТАЮЩИЕ НА БЛОКАХ НЕРАВНЫХ

РАЗМЕРОВ

Белорусский национальный технический университет
г. Минск, Республика Беларусь

Многие задачи на реальных сетях предполагают поиск кратчайших путей между всеми парами
вершин графа и расстояний между вершинами (APSP). Решение крупномасштабной задачи APSP
на современных многопроцессорных (многоядерных) системах является ключевым для различных областей
применения. Вычислительные затраты на ее решение высоки, поэтому во многих случаях приемлемыми
считаются приближенные решения. Перспективным подходом, позволяющим эффективно использовать
множество процессоров (ядер) и их кэши в параллельном режиме, являются блочные алгоритмы APSP.
В то же время, насколько нам известно, в блочных алгоритмах семейства Флойда-Уоршалла все блоки
имеют одинаковый размер. Это свойство ограничивает применение алгоритмов. В статье предлагаются
новые блочные алгоритмы, которые разбивают граф на неравные подграфы и разбивают матрицу
расстояний между парами вершин на блоки неравного размера. Алгоритмы описывают плотные
подграфы матрицей смежности, а разреженные подграфы и связи между ними ‒ списком смежности.
Такой подход позволяет совместно использовать алгоритмы семейства Флойда-Уоршалла с алгоритмами
семейства Дейкстры. Он может быть применен к большим графам, декомпозированным на плотные
(кластеры) и разреженные подграфы. Новый гетерогенный алгоритм может существенно сократить
время вычисления блоков в зависимости от типа и размера. Вклад статьи заключается в разработке
нового семейства блочных алгоритмов APSP, которые работают с блоками неравных размеров, сохраняют
и расширяют преимущества алгоритмов, работающих с блоками равных размеров. Предложенные
алго-ритмы реализованы в виде одно- и многопоточных параллельных приложений для многоядерных систем.

Ключевые слова: Задача APSP, блочный алгоритм, неравные размеры блоков, разнородный алгоритм,
многопоточная реализация, многоядерный процессор

4, 2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

SYSTEM ANALYSIS 13

Karasik Oleg is a Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk,
Belarus, and PhD (Eng) (2019). His research interests include parallel multithreaded applications
and the parallelization for multicore and multiprocessor systems.

О.Н. Карасик, ведущий инженер иностранного производственного унитарного
предприятия «ИССОФТ СОЛЮШЕНЗ» (часть Coherent Solutions), г. Минск, Беларусь, к.т.н.
(2019). В сферу его научных интересов входят параллельные многопоточные приложения и
распараллеливание для многоядерных и многопроцессорных систем.

E-mail: karasik.oleg.nikolaevich@gmail.com

