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In real-world networks, many problems imply finding the All-Pairs Shortest Paths (APSP) and their dis-
tances in a graph. Solving the large-scale APSP problem on modern muti-processor (multi-core) systems is the key
for various application domains. The computational cost of solving the problem is high, therefore in many cases
approximate solutions are considered as acceptable. The blocked APSP algorithms are a promising approach
which can exploit many processors (cores) and their caches in parallel mode efficiently. At the same time, to our
best knowledge, all blocked algorithms of the Floyd-Warshall family use blocks of equal sizes. This property limits
application of the algorithms. In this paper we propose new blocked algorithms which divide the input graph into
unequal subgraphs and divide the matrix of distances between pairs of vertices into blocks of unequal sizes. The
algorithms describe the dense subgraphs by the adjacency matrix and describe sparse subgraphs and connections
between them by the adjacency list. This approach allows the Floyd-Warshall family algorithms to be used together
with Dijkstra family algorithms. It can be applied to large graphs decomposed into dense (clusters) and sparse
subgraphs. A new heterogeneous algorithm can significantly reduce the computation time of blocks depending on
the block type and size. The contribution of the paper is the development of a new family of blocked APSP
algorithms which can handle blocks of unequal sizes, save and extend the advantages of the state-of-the-art
algorithms operating on blocks of equal sizes. The proposed algorithms are implemented as single- and multiple-

threaded parallel applications for multi-core systems.

Keywords: APSP problem, blocked algorithm, unequal sizes of blocks, heterogeneous algorithm, multi-core

pro-cessor, muti-threaded implementation

Introduction

The problem of finding shortest and longest
paths between vertices of a large, weighted graph [1-6]
has many applications, such as Internet route planners,
traffic road networks, traffic simulations in computer
networks, car/robot navigation systems, courier-
scheduling optimization, biological information mining,
web searching, social networks, etc. The interest in this
problem has significantly increased recently due to the
emergence of het-erogencous parallel computing systems
combining the classical and increasingly powerful CPUs
with modern powerful hardware acceler-ators [7-9]. The
computational complexity of shortest paths algorithms
depends on the graph type [3, 4]: directed or nondirected,
weighted or not weighted, dense or sparse, what is the
edge weight (integer, real, positive, negative, etc.). There
are different formulations of the shortest path problem:
between two vertices; between the source (sink) and
each other vertex (single source and single sink — SSSP);
between each pair of vertices (all pairs shortest paths —
APSP); all vertices must be in the path or not. For each
formulation, a set of competitive algorithms has been
developed.

The focus of this paper is on the all-pairs
shortest paths problem (APSP) and on the blocked

algorithms [10, 11] of solving the problem. The state-of-
the-art APSP-algorithms decompose the dense graph into
equally sized subgraphs and decompose the path distance
matrix into blocks of the same size. The key contribution
of the paper is the extension of the algorithms which
leads to the use of blocks of unequall sizes. The corollary
of the extension is the emerging possibility of modifying
the APSP-algorithms which handle efficiently the dense
graphs to solve the shortest paths problem on sparse
graphs.

All-pairs shortest paths algorithms

Let G = (V, E) be a simple directed graph with real
edge-weights consisting of a set V, |V] =N, of vertices
numbered 1 through N and a set E of edges. Let W be
a cost adjacency matrix for G. So, w(i, i)=0, 1 <i <N;
w(i, j) is the cost (weight) of edge (i, ;) if (i, j) € E and
w(i,j)=wifi #jand (i, ) ¢ E.

Let d, be a length of a shortest path from vertex
i to vertex j, and D be a matrix of distances between all
pairs of vertices i, j € V, i #j. Let P be a matrix whose
element pij is a vertex that is previous for vertex j in a
path from i to j. The objective of an APSP-algorithm is to
compute the D and P matrices for a given graph G. Two
main families of the algorithms exist to solve the APSP
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problem: 1) based on the Dijkstra SSSP-algorithm [1];
2) based on the Floyd-Warshall APSP-algorithm [2].

The first family includes the Dijkstra
algorithm [1], the Bellman-Ford algorithm [12], the
Johnson algorithm [13], the Harish and Narayanan
algorithm [14], and others [15]. The time complexity of
the Dijkstra algorithm that targets directed graphs with
positive edge-weights is O(|V]-Ig(|V])+|E|) for SSSP.
On graphs of this type, the application of the Dijkstra
algorithm to each graph vertex solves the APSP problem
with the time complexity of O(|V*ig(|V]+|V]'|E)).
The time complexity of the Bellman-Ford algorithm
for a graph with positive/negative edge-weights is
O(|V]*+|V]-|E|) for SSSP. It is higher than the Dijkstra
algorithm’s time complexity. The Johnson algorithm
uses the Dijkstra and Bellman-Ford algorithms
as subroutines and solves the APSP problem with
negative edge-weights in O(|V[*Ig(|V|+|V]-|E]) time.
On sparse graphs, the Johnson algorithm outper-forms
the APSP algorithms from the Floyd-Warshall family.
The Harish and Narayanan algorithm is a parallelized
version combining the characteristics of the Dijkstra
and Bellman-Ford algorithms. It was developed for the
implementation on GPUs.

The second family includes among others the
Floyd-Warshall (FW) algorithm [2], the blocked Floyd-
Warshall algorithm (BFW) proposed in [6, 10, 11] by
Katz, Venkataraman and others, the graph extension-
based algorithm (GEA) and the heterogeneous blocked
APSP algorithm (HBAPSP) both proposed by Prihozhy
and Karasik in [16—-18].

The FW algorithm is described with three nested
loops. It performs a relaxation (min, +) operation on
elements of matrix D. Its time complexity is O(|V]*)
no matter how many positive/negative edges the graph
contains. The algorithm is simple in the organization of
computations. This property is an advantage of the al-
gorithm. The algorithm tries to recalculate all elements
of matrix D in every iteration of the most outer loop. This
property is a drawback of the algorithm. The algorithm is
parallelised by OpenMP [19].

The GEA algorithm calculates the shortest paths
while stepwise adding vertices to graph G. Therefore, the
shortest path lengths (real positive/negative numbers)
are represented by a sequence of matrices D[1x1], ...,
D[|V]x|V]]. The size of D is increased by 1) adding and
computing a new row and column and 2) recomputing
previous elements of D. The resynchronization of these
operations was carried out by formal methods and
allowed to reduce the number of iterations in loops and to
improve the spatial and temporal data references locality
in GEA. As a result, GEA reduces the cache pressure
in multi-core processors and speeds up the search of
shortest paths.

The blocked BFW algorithm solves two problems:
1) localizes the data accesses within blocks (tiles) and to
increase the efficiency of hierarchical memory operation;
2) parallelizes computations at the block level. BFW

divides the graph into subgraphs of equal sizes and splits
the matrix of shortest paths distances into equally sized
square blocks (tiles), creating a uniformly blocked matrix
of the MxM dimension. In each iteration of the most outer
loop, a diagonal block is calculated first, blocks on the
cross associated with the diagonal block are calculated
second (possibly in parallel), and all other peripheral
blocks are calculated third (possibly in parallel). Eeach
block is recalculated M times using the FIW algorithm.
BFW is easily parallelised by OpenMP in fork-join style.
It balances the workload in symmetric multiprocessing
sharedmemory systems.

Unlike BFW, the HBAPSP algorithm does not
use FW for recalculating each block. It distinguishes
the blocks of four types: diagonal, vertical of cross,
horizontal of cross, and peripheral. It provides a separate
unique block calculation algorithm of higher performance
for each block type. The four algorithms account for the
features of the corresponding block types. They reduce
the number of iterations in nested loops, exploit the
references locality of data in CPU caches, and speedup
the computations. The diagonal blocks are calculated by
GEA. OpenMP parallelizes HBAPSP at task level in fork-
join style.

The basic ideas of BFIW were fruitfully used in
several works, which contribute in solving the shortest
paths problem:

1. A recursive blocked FWW algorithm [10].

2. Efficient usage of GPUs [7-9].

3. Solving sparse graph scaling problem [20].

4. Optimization of data allocation in hier-archical
memory [21].

5. Improving cache performance for APSP [11,
17, 22].

6. A cooperative threaded algorithm [23, 24].

7. Selection of optimal block-size [25].

8. Reducing energy consumption [26].

9. Shortest paths search dataflow networks of
actors for multicore implementation [27].

The state-of-the-art blocked shortest paths
algorithms cannot handle blocks of unequal sizes,
therefore, cannot decompose graphs into unequally sized
subgraphs do not match the heterogeneous computing
systems, etc.

Decomposition of matrix of paths lengths into
blocks of unequal sizes

In the paper, we propose to decompose the graph
G into subgraphs and decompose the matrix B into
blocks of unequal sizes defined by vector S=(S,...S,)
(Figure 1). While M blocks are square on the principal
diagonal of B (block B, has the V<V, size), all other
blocks are rectangular in general case (block Bij has the
V<V, size for i, j=1...M, 1 #j). All blocks in row i have
the height of I, and all blocks in column j have the width
of V. Matrix P of previous vertices in the shortest paths
has the same structure.

4,2023

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE



CUCTEMHBIN AHAJIV3

6
By, By By; By
By By By | Bu
B=
B; B3 Bs; B,
By By By By

Figure 1. Decomposition of matrix of shortest paths lengths
into matrix of blocks of unequal sizes

There are several advantages to such an approach.
It extends the classic blocked shortest paths search
algorithms to a more general case. The decomposition
of an input graph into subgraphs can be derived from
the natural origin structure of the graph. From the
computational point of view, a large graph can be decom-
posed into subgraphs that have different properties (for
instance, dense or sparse), which allows to choose the
most appropriate computational algorithm for each
subgraph. It also allows to select the most appropriate
block size (from the hardware perspective) to be used for
majority of the blocks even if graph isn’t evenly divided
by it. Unequally sized blocks of both matrices B and P
can be assigned to processors of different capabilities,
which enables the speedup on the heterogeneous multi-
processor system while solving the shortest paths prob-
lem.

Extension of blocked Floyd-Warshall
algorithm to unequal block-sizes

Assuming unequal sizes of blocks, we extend the
known blocked Floyd-Warshall homogeneous algorithm
BFW to an allpairs shortest path algorithm BFWUS,
which can handle a block-matrix B of unequally sized
blocks. Algorithm 1 describes the BFWUS. In a loop
along m it recalculates each of M? blocks of matrix B,
therefore, it performs M3 recalculations of blocks in total.

Algorithm 1: Extension of blocked Floyd-Warshall algo-
rithm accounting for blocks of unequal sizes (BFWUS)

Input: A number N of input graph vertices
Input: A matrix W[NxN] of graph edge weights
Input: A number M of blocks
Input: A vector S =(S,...S,,) of sizes of vertex subsets
Output: A blocked matrix B[M x M] of path distances
Output: A blocked matrix P[Mx M] of previous vertices
in shortest paths
fori,j < 1toNdo
if W(i, j) #  then
Pi"it(i,j) — 1
else

P, j) «— undefined
B[M*M] < W[Nx*N] P[MxM] < P"[NxN]
for m < 1 to M do

BCUS(S, B, P, m, m, m) /I DO
for v« 1to M do
if v #m then
BCUS(S, B, P, v, m, m) /I C1
BCUS(S, B, P, m, m, v) /1 C2

for v« 1to Mdo
if v #m then
for u <— 1 to M do
if u # m then
BCUS(S, B, P, v, m, u)
return B, P

/I P3

Algorithm 2 describes a block-calculation
algorithm BCUS with the feature of processing blocks of
unequal sizes. The algorithm’s inputs are three blocks B,
BV and B, of which two or three can be identical. The
sizes of blocks are § xS, 8 xS and S xS respectively.
BCUS consists of three nested loops It makes S xS xS
attempts to update the values of elements of block B no
matter the three blocks are dense or sparse. The order of
loops is essential. The loop along k& must be the outer, it
cannot be reordered with other loops.

Algorithm 2: Calculation of blocks of unequal sizes
(BCUS)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M x M] of path distances
Input: A blocked matrix P[M x M] of previous vertices
in shortest paths
Input: Indices v, m, u of vertex subsets
Output: Recalculated matrix B regarding block B,
Output: Recalculated matrix B regarding block P »
fork—1toS do
for i< 1toS do
for j«—1toS, do
sum < B, (z k)+B, (k,J)
ifB (i, j) > sum then
B (i, )) < sum
Pv’u(i, J) — Pm,u(k, j)
return B, P ’

There are four calls of BCUS in BFWUS
(Algorithm 1), which correspond to four types of blocks:
DO (diagonal), C1 (vertical in cross), C2 (horizontal in
cross) and P3 (peripheral). The calls differ each other by
the actual parameters, of which three first describe the
vector of sizes and the matrices of blocks, and three oth-
ers select the blocks.

Figure 2 depicts the process of stepwise re-
calculation of unequally sized blocks of the modified
matrix B in algorithm BFWUS. For matrix B[4x4], the
process consists of four steps. At step 1, block B
diagonal DO. It is calculated first. Then, blocks B
B,, of type C1 and blocks B ,, B

21° 31’

B, of type C2 are

13
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calculated through B, possibly in parallel. After that, all
other blocks of type P3 are calculated possibly in parallel
through blocks of types C1 and C2: B, is calculated

through B, and BU ati,j=2,3,4. At steps 2, 3 and 4
blocks B,,, B,, and B,, become diagonal of type D0, and
the calculation procedure repeats in the same manner.

Step 1 Step 2 Step 3 Step 4
m c2 (€22 c2 23 P3 P3 P3 (€} 3 B3 P3 B3 @il
(el P3 23 23 c2 Cc2 P3 P3 @l 'P3 P3 23 B3 il
(il 23 23 P3 23 Cl 23 23 2 G2 G2 P3 P3 P3
(il P3 P3 P3 B3 (@l P3 23 P3 P3 c1 P3 2 2 2 M

Figure 2. Illustration of BFWUS operation: cross moves from top-left to bottom-right corner of blocked matrix B;
firstly, block DO is calculated through itself; secondly, blocks C1 and C2 are calculated through DO; thirdly, blocks P3
are calculated through C1 and C2; wite arrows in step 2 show data dependence between blocks

Generalization of heterogeneous blocked all-pairs
shortest paths algorithm

We extend the known blocked heterogene-ous
algorithm HBAPSP [16-18] to a blocked heterogeneous
APSP algorithm HBAPSPUS, which can handle
unequally sized blocks. HBAPSP was proposed as
a means of consider-ing the features of the four types
of blocks at the aim of speeding up their computation.
HBAPSPUS described by Algorithm 3 allows the blocks
to have unequal sizes, which further extends the property
of performing computations heterogeneously and extends
the nonuniformity of the processor’s cores load. Unlike
BFWUS including four calls of the same algorithm
BCUS with six input parameters, HBAPSPUS calls four
different block calculation algorithms: DOUS with two
parameters, C1US with four parameters, C2US with four
parameters and BCUS with six parameters. The calls
of different algorithms course different computational
load. The computational complexity of Algorithm 3 is
equal to the computational com-plexity of Algorithm 1.
Moreover, the algorithms have the same parallelization
potential. The algorithms yield the same values of
matrix B, although they can yield different values of
matrix P. The reason is different shortest paths with the
same length may exist between two vertices.

Algorithm 4 (DOUS) generalizes the diagonal
block calculation algorithm proposed in [16-18].
DOUS, b, . and p, . are elements of blocks B and Pmm
The algor1thm calculates the diagonal square blocks
B, and P . ofsize [S xS ] through themself without
involving other blocks. Therefore it consumes fewer
amount of data against algorithms calculating blocks of
other types.

Like in BCUS, the main execution part of DOUS
includes three nested loops, but the loops along i and
have an updated iteration scheme producing a smaller
number of iterations. DOUS starts operation from a part
of B, (P, ) having the size [1x1] and step-by-step

m,m

increases the size of the part. The loops consequently

process growing matrices of size [1x1], [2x2] ...
[S,*S 1, which support the DOUS’s property of temporal
locality. DOUS has up to three times a smaller number
of executions of the body of the most nested loop than
BCUS has and reduces the cache pressure.

Algorithm 3: Heterogeneous blocked shortest paths
search upon unequal block-sizes (HBAPSPUS)

Input: A number N of graph vertices
Input: A matrix W[NxN] of graph edge weights
Input: A number M of blocks
Input: Vector §= (S,...S,)) of sizes of vertex subsets
Output: A blocked matrix B[M x M] of path distances
Output: A blocked matrix P[M x M] of previous vertices
in shortest paths
B[M xM] < WIN*N]
for m — 1 to M do
DOUS(S, B, P, m)
forv—1toMdo
if v # m then
C1US(S, B, P, v, m)
C2US(S, B, P, m, v)
forv—1toMdo
if v # m then
for u <— 1to M do
if u # m then
BCUS(S, B, P, v, m, u)

/I DO
/1 C1

/1 C2

/I P3
return B, P

Algorithm 5 (C1US) calculates Cl-type vertical
rectangular blocks B, and P of size [S xS ] of cross
through themself andblocksB nand P ofsize [S xS ]
without involving third blocks. It generahzes the s1m1lar-
purpose algorithm proposed in [18]. In C1US, b1, and
b3, . (pl and p3, ) are elements of blocks B,
(P and P )respectlvely The loop along j of C1US has
the 1terat10n scheme that produces k—1 iteration, which
is smaller than the number of corresponding iterations

4,2023
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in BCA. The two nests of loops consequently process
matrices of growing size [S x1], [S *x2] ... [S xS ]. It
means that C1US has the property of temporal references
locality, decreases the number of accesses to memory
and reduces the cache pressure in comparison to BCUS.
Moreover, the overall number of iterations of the most
nested loop of C1US is twice smaller than in BCA.

Algorithm 4: Calculation of diagonal blocks of une-
qualsizes (DOUS)

Input: A vector S of sizes of graph vertex subsets
Input: A blocked matrix B[M x M] of path distances
Input: A blocked matrix P[M x M] of previous vertices
in shortest paths
Input: Index m of vertex subsets
Output: Matrix B recalculated regarding block B, |
Output: Matrix P recalculated regarding block P .
for k< 2to§ do
kl —k—1
fori — 1 to k1 do
forj — 1 to k1 do
a,«<b,, bk1
1f b > a then’
bw — a2 P,
a,«—b,_ )k
1f b, > a, then
b —a, p,
a, b, + b,
1f b,. > a then
e
fori— 1tokl—1do
forj«— 1tokl—1do
a — bzk] + bkl/
1f b >a, then
b —a, p,;
return B, P

TPy,

TPk

“Pu,

Algorithm 6 (C2US) calculates a C2-type
horizontal rectangular cross blocks B, and P,  of size
[S, xS ] through blocks B, and P, of size [S, XS ' land
themself without 1nV01V1ng third blocks. It generahzes
the similar-purpose algorithm proposed in [18]. The loop
along i of C2US has the iteration scheme that produces
k—1 iteration. It is less than the number of corresponding
iterations in BCA. All the loops consequently process
matrices of growing size [1xS ], [2xS§ ] ... [S, xS ]. Like
DOUS and C1US, algorithm C2US has the property of
temporal references locality, decreases the number of
accesses to memory and reduces the cache pressure in
comparison to BCUS. The overall number of iterations
of the most nested loop of C2US is twice smaller than
in BCA.

HBAPSPUS calls the universal block calculation
algorithm BCUS to compute all peripheral P3 blocks.
Since the blocks of D0, C1 and C2 types are calculated
by other algorithms, the three nested loops along £, 7 and
Jj can be reordered arbitrarily in BCUS.

Algorithm 5: Calculating vertical block of cross upon
unequal block-sizes (C1US)

Input: A vector S of sizes of graph vertex subsets

Input: A blocked matrix B[M x M] of path distances

Input: A blocked matrix P[M x M] of previous vertices
in shortest paths

Input: Indices v and m of vertex subsets

Output: Matrix B recalculated regarding block B, |

Output: Matrix P recalculated regarding block P

B1 — B, B3 «—B P1 —P P3 <—Pmm
fork<—1toS do
kl «— k—1;

fori<—ltoSvd0
forj — 1tok1do
aZ(_bli,kl +b3k1,/
if b1, >a, then

ifpl,, > a then
bl L a rl, <—p3j’k
kl S
for i — 1 to S do
for]<—1t0k1 — 1do
aZ “— bl[,kl + b3k1,j
if bll_J_ > a, then
blu —a, pl,<p3
return B, P

Kl

Algorithm 6: Calculating horizontal block of cross upon
unequal block-sizes (C2US)

Input: A vector S of sizes of graph vertex subsets

Input: A blocked matrix B[M x M] of path distances

Input: A blocked matrix P[M xM] of previous vertices
in shortest paths

Input: Indices m and v of vertex subsets

Output: Matrix B recalculated regarding block B, |

Output: Matrix P recalculated regarding block P .

Bl«—B  B2«<B Pl<—P§, P2 P
fork<—1toS —ldo
kl «— k—1;

fori<—ltok1 do
forj—1toS do
aZ(_bzi,kl +b1k1.J
if blu > a, then
le(—a rl,—pl

Kty
a,«— b2, +bl
1fb1 >a then
bl —a, pl<pl,
kl S

fori<— 1tokl < 1do
forj— 1toS do
aZ - bz[,kl + blkl,/
ifblu> a, then
bll.J —a, pl,;—pl
return B, P

klj
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Searching shortest paths in graphs consisting
of weakly connected dense subgraphs

The all-pairs shortest paths search can be
significantly speeded up if the large graph is decomposed
into a set of dense weakly connected subgraphs. In
this case, we can compute the shortest paths in dense
subgraphs by using the APSP algorithms on adjacency
matrix (such as FW, GEA and others), and can compute
the shortest paths between the dense subgraphs by using
the single source and single sink algorithms on adjacency
lists (such that Dijkstra, Harish-Narayanan and others).
With this idea in mind, we can extend HBAPSPUS by
considering sparse alternatives of the block calculation
algorithms C1US, C2US and BCUS.

Let consider an example weighted graph G
depicted in Figure 3. The graph contains two complete
directed subgraphs G' and G* constructed on two subsets
{1,2,3,4,5} and {6, 7, 8} of vertices respectively.

Just arc (3, 8) connects the first subgraph to the
second one. Just arc (6, 1) connects the second subgraph
to the first one. Matrix B[2 x2] is constructed of four
blocks and is initialized using the rows and columns
of W: B, is the crossing of rows 1-5 and columns
1-5, B,, is the crossing of rows 6-8 and columns 6-8,
B, is the crossing of rows 1-5 and columns 6-8, and
B, is the crossing of rows 6—8 and columns 1-5. Blocks
B, and B, are sparse since their elements are mostly
initialized to oo (infinity).

HBAPSPUS updates each block twice. It performs
eight (min, +) matrix operations (denoted ®) on four
blocks:

B

G2
7 8
@ @
a
1 2 3 4 5 6 7 8
110 2 4 3 T o o o
215 0 2 1 5 o o x®
303 7 0 2 1 o« o 1
W=4|19 1 4 0 8 =« =« «®
5] 1 8 9 6 0 = =« «
6l 1 o oo o« o 0 8 7
7] @ o o o o[ 5 0 4
8| 0o o w w o« 9 6 0
b

Figure 3. Example directed graph G consisting of two weakly
connected complete subgraphs G' and G*:
a) graphical view of G; b) matrix ¥ of graph edge weights
decomposed into four blocks

Algorithm DOUS performs operations 1 and 5,
ClUS performs operations 2 and 6, C2US performs
operations 3 and 7, and BCUS performs operations
4 and 8. Figure 4 shows matrices B and P which are a
result of executing HBAPSPUS. Since subgraphs G' and
G? are connected by single arc in each direction, rows 6,
7 and 8 of block B, are heavily dependent (differ by a
constant). Columns 6, 7 and 8 of block B, are heavily
dependent too (Figure 4a). Moreover, rows of peripheral
block P, are identical; columns of peripheral block P,
are also identical (Figure 4b). To reduce the algorithms
runtime and memory consumption, we revise the block
calculation algorithms C1US, C2US and BCUS and
improve them with respect to the sparseness of blocks of
types C1, C2 and P3.

_1 2 3 4 5 6 7 8_
1[0 2 4 3 5 14115
2[4 0 2 1 3 12 9 3
32 3 0 2 1107 1
B=4|5 1 3 0 4 13 10 4
5001 3 5 4 0 1512 6
5| 1 3 5 4 6 8 6
7l 6 8 10 9 11 5 0 4
810 12 14 13 15 6 0 |
a
_I 2 3 4 5 6 7 8_
10 00 0 2 7 7 2
24 111 2 7 7 2
3|4 3 2 2 2 7 7 2
P=4|4 3 1 3 2 7 7 2
5/4 0 0 0 4 7 7 2
6|5 0 0 02 5 5 2
715 00 0 2 6 6 6
s 5 000 2 7 7 7|
b

Figure 4. Matrices of blocks: @) matrix B of shortest paths
lengths in example graph G; b) matrix P of previous vertices:
p; is a predecessor of vertex j in a shortest path from i to j

[5x5] « B, [5%5] ® B [5%5]
[3x5] « B, [3x5] ® B, [5x5]
5%3] B |[5%5] ® B, [5%3]
.B[3%3] « B, [3x5] ® B ,[5%3]
.B[3%3] « B, [3%3] ® B, [3x3]
.B[5%3] < B ,[5%3] ® B, [3x3]
. B, [3%5] < B,,[3%3] ® B, [3x5]
. B, [5%5]« B ,[5%3]® B, [3x5].
Results. We have developed a software in
C++ which implements on multicore processors
the homogeneous blocked BFWUS algorithm and
heterogeneous blocked HBAPSPUS algorithm on
blocks of unequal sizes. A validation module is a part
of the software which checks the correctness of blocked
matrices B and P as compared with the shortest paths
obtained by the Floyd-Warshall algorithm.

11
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Conclusion and calculating the unequally sized blocks of matrices

representing the shortest paths and their lengths. The

The paper has shown that the state-of-the- proposed algorithms aim at considering the nature of the

art blocked all-pairs shortest paths algorithms can be large graphs and their partitioning into subgraphs as well

extended at the aim of handling the unequally sized dense  at speeding up the computation of shortest paths between
and sparse subgraphs of the large, decomposed graph vertices on high-performance multi-processor systems.
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TIPUXO)XXHH A.A., KAPACHK O.H.

HOBBIE BJIOYHBIE AJITOPUTMbI IOMCKA KPATYUAUIINX ITYTEA MEXITY
BCEMM ITAPAMM BEPIIINH I'PA®A, PABOTAIOIIIUE HA BJIOKAX HEPABHBIX
PASMEPOB

benopyccruii nayuonanvusiii mexnuyeckuii yHugepcumemn
2. Munck, Pecnyonuxa benapyce

Mnoeue 3a0auu Ha peanvbHuIX cemsx Npeonolazaiom NOuUCK Kpamuyauuiux nymei mexcoy ecemu napamu
eéepuiun epagpa u paccmosHuit mexncoy eepuiunamu (APSP). Pewenue xpynuomacwmabrou 3adauu APSP
HA COBPEMEHHBIX MHO2ONPOYECCOPHBIX (MHO20S0EPHBIX) CUCTNEMAX SGIACMCS KIIOUe8bIM OJisl PAUYHBIX 001acmell
npuMenenus. Boluuciumenvhbie 3ampamsl HA ee PeuleHue GblCOKU, NOIMOMY 60 MHOSUX CIYYAsIX NPUeMIeMbLMU
cuumaiomest npubnudicennvie peuienus. IlepcnekmuHvilm no0Xo0om, NO38OIAIOUWUM IPDEKMUCHO UCTIONBb306AMb
MHOJICECBO NPOYECCOPO8 (A0ep) U ux Kowu 8 NnapaiienbHoM pedcume, 61aiomces onounvie areopummot APSP.
B mo oice spems, nackonbko nam u3eecmno, 6 OI0UHBIX ancopummax cemeticmea @Duovda-Yopwanna ece Onoku
uMerom 00UHAKOBLIU pasmep. Imo cOUCMB0 0ZpAHUYUEaen) NPUMEHEeHUe aizopummos. B cmamove npediazaiomcsi
HOBble ONIOYHble AN2OPUMMbL, KOMOpble pazousarom 2pagd Ha HepasHvle noocpaghel u pazouearom mampuyy
PACCMOsIHULL  MedcOy Napamu  Gepulun Ha ONOKU HepagHo20 pasmepd. Anieopummvl ORUCHIEAION NIOMHbLE
noozpagvl mampuyel cCMeNCHOCMU, a paspexiceHuvie noozpagvl U CeA3U MeHCOY HUMU — CRUCKOM CMENCHOCHU.
Taxoti n00x00 No360/em COBMECMHO UCNONb308AMb ANOpUmMMbL cemelicmea Pnotida-Yopwania ¢ areopummamu
cemevicmea Jletikempol. On modicem Ovbimb npumenen K OOIbUUM 2pagam, OeKOMNO3UPOBAHHbIM HA NIOMHbIE
(knacmepwt) u paspesicennvie noocpagvl. Hoewill cemepocennviil aneopumm Modicem cCyujecmeeHHo COKpamumo
6peMsl GbIUUCHEHUs DIOKO8 6 3A6UCUMOCIU Om Mund u pasmepd. Bkiad cmamwu 3axiouaemcs 6 paspadomie
HO0B020 cemeticmea Onounblx areopummos APSP, komopbvie pabomarom ¢ O10KAMU HEPABHBIX PAZMEPOE, COXPAHSIOM
U pacwupsion npeumMywecmed aicopummos, pabomarwux ¢ Onokamu pasuelx paszmepos. IIpednosicenvie
AN2O-pUMMbL PEAiU308aHbl 6 BUOE OOHO- U MHOLONOMOUHBIX NAPATIETbHBIX NPULONCEHUL OJisl MHO2O0S10ePHBIX CUCTEM.

Knroueswvie cnosa: 3aoaua APSP, 6nounviii ancopumm, nepagnvle pazmepul OJI0KO8, PA3ZHOPOOHbIL AICOPUMM,
MHO20NOMOUNAS Peanu3ayusi, MHO20S0EePHbLIL NPOYECcop
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