4 CUCTEMHBINA AHAJIN3

UDC 004
DOI: 10.21122/2309-4923-2023-2-4-12

PRIHOZHY A.A., KARASIK O.N.

INFLUENCE OF SHORTEST PATH ALGORITHMS ON ENERGY CONSUMPTION
OF MULTI-CORE PROCESSORS

Belarusian National Technical University
Minsk, Republic of Belarus

Modern multi-core processors, operating systems and applied software are being designed towards energy
efficiency, which significantly reduces energy consumption. Energy efficiency of software depends on algorithms it
implements, and, on the way, it exploits hardware resources. In the paper, we consider sequential and parallel im-
plementations of four algorithms of shortest paths search in dense weighted graphs, measure and analyze their runt-
ime, energy consumption, performance states and operating frequency of the Intel Core i7-10700 8-core processor.
Our goal is to find out how each of the algorithms influences the processor energy consumption, how the processor
and operating system analyze the workload and take actions to increase or reduce operating frequency and to dis-
able cores, and which algorithms are preferable for exploiting in sequential and parallel modes. The graph exten-
sion-based algorithm (GEA) appeared to be the most energy efficient among algorithms implemented sequentially.
The classical Floyd-Warshall algorithm (FW) consumed up to twice as much energy, and the blocked homogeneous
(BFW) and heterogeneous (HBFW) algorithms consumed up to 52.2 % and 21.2 % more energy than GEA. Parallel
implementations of BFW and HBFW are faster by up to 4.41 times and more energy efficient by up to 3.23 times than
the parallel implementation of FW and consume less energy by up to 2.22 times than their sequential counterparts.
The sequential GEA algorithm consumes less energy than the parallel FW, although it loses FW in runtime. The mul-
ti-core processor runs FW with an average frequency of 4235 MHz and runs BFW and HBFW with lower frequency

of 4059 MHz and 4035 MHz respectively.

Keywords: multi-core processor, shortest paths algorithm, single-thread application, multi-threaded applica-

tion, runtime, energy consumption, OpenMP

Introduction

Multi-core CPUs are at the heart of modern
computing platforms whose share of the total energy
consumption is rapidly increasing. The energy
consumption of computing systems and devices accounts
for 20% of the global electricity demand [1, 2], and the
prediction is up to 50% of global electricity in 2030.
A model for estimating with high accuracy the power
consumption of multi-core processors is presented in [3].

Power management is one of the most critical
issues in the design of today’s microprocessors [4, 5]. Its
goal is to maximize performance within a given power
budget. Power management techniques must balance
between the demanding needs for higher performance
and the impact of aggressive power consumption and
negative thermal effects. The most adopted power saving
technique for current multi-core processors is the ability
of dynamic frequency tuning which is based on Dynamic
Voltage and Frequency Scaling (DVFS). Many studies
use DVFS to adjust the frequency of processor cores,
and to save power. They are classified into two groups:
profiling and performance monitors. The profiling
techniques measure the behaviors of applications and
analyze the obtained results to tune the frequency of
processors. The hardware performance monitors collect
information about CPU usages in run-time and then tune
the frequency of multi-core processor to save power
without significant overhead.

Energy consumption can also be decreased by
optimizing machine code and creating green software.
The contribution of this paper is a methodology of
developing and selecting applied algorithms (on example
of shortest paths algorithms) which significantly reduce
the energy consumption and increase performances.

All pairs shortest path algorithms

Let G=(V, E) be a simple directed dense graph
with real edge-weights consisting of a set V, |V| =N, of
vertices numbered 1 through N and a set £ of edges. Let W
be a cost adjacency matrix for G. So,w(i, i) =0, 1 <I<N;
w(i, j) is the cost (weight) of edge (i,) if (i,j) € E and
w(i,j)=owif i #jand (i, j) ¢ E. Let consider the problem
and algorithms of shortest paths search in graph G.

Floyd-Warshall algorithm (FW). Let D be a
matrix of distances and element D(i, j) be a length of
a shortest path from i to j. Let SP(i, j, k) be a function
that returns the length of the shortest path from i to j
passing through vertices from set {1,2 ... k}. The goal
of FW [6-8] is to find SP(i, j, N),i,j=1... N.If we have
SP(i, j, k—1), then SP(i, j, k) can be defined recursively:

SP(i, j, k) = min(SP(i, j, k-1),
SP(i, k, k-1) + SP(k, j, k-1)), (1)

with the base case SP(i, j, 0) = w(i, j). The FW
algorithm is derived from definition (1):

CUCTEMHBIA AHAJIN3 U TPAUKJIATHASI THOOPMATHUKA

2,2023

SYSTEM ANALYSIS

5

D—Ww
fork e {l...N}} {
fori,j e {1...N}} {

D, j) <= min (DG, j), DG, j) + DG, J))
1

The FW algorithm has the same computational
complexity of ©(|V*) no matter how many edges the graph
contains. An advantage of the algorithm is its simplicity
in the organization of computations. Its drawback is
the recalculation of all elements of matrix D in every
iteration of the loop along k. FW can be parallelised by
OpenMP. An alternative to FW is proposed in [9].

Graph extension-based algorithm (GEA). The
algorithm was proposed in [10, 11]. In GEA, the process
of calculating the shortest paths is associated with
stepwise adding of vertices to graph G. Therefore, the
shortest path distances are represented by a sequence of
matrices D[1x1] ... D[(k=1)x(k-1)], D[kxk] ... DINxN].
GEA uses two operations: 1) adding row & and column &
to matrix D[(k—1)x(k—1)] with obtaining matrix D[kxk];
2) updating matrix D[(k—1)X(k—1)] over row k and
column £. These operations are described as:

D—Ww
fork e {1...N} {
fori,je {l...N}{

D(i, k) < min (D(i, k), D(i, j) + D(j, k))
D(k, j) < min (D(k, j), D(k, i) + D(i, j))

H
fori, j e {l...N} {
D(i, j) < min (D(i, j), D(i, k) + D(k, j))
1
Then the obtained algorithm is formally

transformed to a more efficient one using the inference
technique proposed in [10, 11]. The transformation rules
of the resynchronization of computations, reordering of
instructions and merging of loops are used to do it. The
following algorithm, GEA is aresult of the transformation:

D—Ww
fork e {2...N} {
r— k-1
fori,je {1...r} {
D(i, j) < min (D(i,), D(i, r) + D(r, j))
D(i, k) < min (D(, k), D(i, j) + D(j, k))
D(k, j) < min (D(k, j), D(k, i) + D(i, J))

Iy
fori,j e {1...N-1} {

D(i, j) < min (D(i, j), D(i, N) + D(N, j))
§

GEA has smaller number of iterations of loops
along variables i and j, has fewer accesses to memory
and has the improved spatial and temporal data
references locality. Therefore, it can reduce the cache
pressure in the multi-core processor and can speed up
the computations.

Blocked FW algorithm (BFW). It was proposed in
[12—18] as a further development of FW. BFW divides
set I of graph vertices into subsets V...V, of size S and
splits matrix D into blocks of size SXS each, creating
a block-matrix B[MxM], where equality M-S = N holds.
The blocks are recalculated in a loop along block count

=1...M. Three phases are used for the recalculation:
l) calculation of a diagonal D0 block B ; 2) calculation
of 2(M-1) cross blocks B and B, of types Cl and C2;
calculation of (M-1)? perlpheral blocks of type P3. BFW
is described by the following pseudocode:

B—W
form e {1...M} {
B, <—BCAB,, B, B, /I DO
forve{l M}y and v#m {
B, « BCA (B B B) /Cl
B, —BCAB, B, .B) /1 C2
H

forvyue {1..M}andv£mand u #m {
B, «—BCAB,,B,.B,) /I P3

Iy
Single function BCA calculates all types of blocks:

BCA (B', B4, B%) {
fork,i,j e {1...5} {
B(i, j) < min (B'(i, /), B(i, k) + B*(k, J))
Iy

Advantages of BFW are: 1) the localization of
data accesses within blocks and increasing the efficiency
of hierarchical memory operation; 2) the capability of
parallel computation of blocks on multi-core processors.
BFW can be parallelised by OpenMP in fork-join style.
Cooperative threaded algorithms [19-21] are based on
BFW.

Heterogeneous blocked FW algorithm (HBFW).
The algorithm was proposed in [11,22]. It inherits
BFW and distinguishes four types of blocks: diagonal
DO, vertical C1 of cross, horizontal C2 of cross, and
peripheral P3. For each block type it provides a separate
block calculation algorithm of higher performance. The
separate algorithms account the features of block types.
They allow the reduction of the number of iterations in
nested loops, the exploit of sequential references locality
of data in CPU caches, and the speedup of computations.
All the separate algorithms improve the spatial and
temporal reference locality in data processing. After
replacing in BFW four calls of function BCA with calls
of four separate functions DO, C1, C2 and P3 using 1, 2,
2 and 3 unique arguments, we obtain a heterogeneous
HBFW:

B—W
form e {1...M} {
B <« DO(B,)
forve {l1..M}andv#m {
B, «ClL(B,,B,)

vm?® T m,m

2,2023

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIV3

Bm,v - C2 (Bm,v’ Bm,m) }
forv,u e {1..M}andv#mandu#m {
Bv,u - P3 (Bv,u’ Bv,m’ Bm,u) }
}

Function DO implements the GEA algorithm
applied to block B'. Function C1 is inferred by applying
the stepwise graph extension concept to block B!
calculated over block B [22]:

C1 (B', B®) {

fork«—2...5{r— k-1
fori«—1...5¢
forj«—1...r{

B\(i, j) < min (B'(i, j), B'(i,) + B*(r,))
B!(i, k) «< min (B'(i, k), B'(i,j) + B%(j, k))
iy
fori,j«—1...5-1{
B!(i, j) < min (B'(i, /), B'(i, $) + B(S,)) }
i

Function C2 is inferred in a similar way by
applying the stepwise graph extension concept to block
B! calculated over block B? [22]:

C2 (B, B?) {
fork«—2...5{r— k-1
fori—1...r{
forj—1...5{
B'(i, j) < min (B'(i,), B*(i, r) + B'(r,)))
B'(k, j) « min (B'(k,), B*(k, i) + B'(i,))
P
fori,j«1...5-1{
B'\(i, /) < min (B'(i, /), B*(i, S) + B'(S, /)
}

Function P3 is inferred from BCA by reordering
loops. All four functions improve the spatial and temporal
data references locality and make the hierarchical
memory operation more efficient. Moreover, functions
DO, C1 and C2 reduce the number of iterations in loops
and the number of accesses to main memory. HBFW can
be parallelised at task level by OpenMP using fork-join
parallelization style.

Measuring energy consumption
of multi-core processor

We used Intel VTune Profiler 2023.0 and
built in Intel SoC Watch utility to measure energy
consumption. Intel SoC Watch is a command line tool
for monitoring metrics related to power consumption on
Intel architecture platforms. It can report power states
for the system/CPU/GPU devices, processor frequencies
and throttling reasons, total energy consumption over
a period, power consumption rate, and other metrics
that provide insight into the system's energy efficiency.
Intel SoC Watch collects data from both hardware and

operating system with low overhead. Our experiments
aimed at the measurement of energy consumption in
Joules (J). To do it, we measured the runtime of each
algorithm represented by single-thread and multi-
threaded implementations and measured the average rate
of energy consumption in Watts (W) of the CPU package
for full duration of each algorithm execution. The CPU
package energy consumption is related to all cores, each-
core-separate L1 and L2 private caches, shared L3 cache
and other hardware components included into the CPU
package.

All runs of the program implementations of four
shortest path algorithms FW, GEA, BFW and HBFW
were carried out on a desktop computer equipped with
Intel Core i7-10700 CPU processor which contains 8
cores (16 hardware threads) with the support of “Intel
Turbo Boost 2.0”, “Intel Turbo Boost Max 3.0” and
“Enhanced Intel SpeedStep” technologies. Every core is
equipped with private L1 (512KB) and L2 (2MB) caches
and shared L3 (16MB) cache. Its base frequency is 2.90
GHz and can increase up to 4.80 GHz. The algorithms
were implemented in the C++ language using GNU GCC
compiler v12.2.0.

Experiments were done on multiple randomly
generated complete directed weighted graphs of 1200,
2400, 3600 and 4800 vertices. Every experiment was
repeated several times and the results were verified
against the results of original Floyd-Warshall algorithm.
Two of the four examined algorithms are blocked and
the other two are not. The following block sizes were
considered: 30x30, 48x48, 50x50, 75x75, 100x100,
120x120, 150x150, 200x200, 240x240, 300x300,
600x600, 1200x1200 and 2400x2400. All the sizes
divide the matrix into equal blocks without remainders.

Influence of single-thread implementations
of algorithms on processor energy consumption

The sequential versions of algorithms FW, GEA,
BFW and HBFW are implemented as single-thread
applications written in C++. The single thread executes
on one core and one logical processor at any time. Other
cores are in idle state; therefore, the energy consumption
is related to a part of the processor components: the
core, its L1 and L2 caches, and shared cache L3. The
experiments show mainly how efficiently the algorithms
exploit the processor’s hierarchical memory.

The first series of experiments demonstrates how
the block size in BFW and HBF W influences the processor
energy consumption. Figures 1-3 show that on graph
of 4800 vertices HBFW consumes less energy against
BFW for all block sizes. The first reason is the runtime
of HBFW is less than the runtime of BFW (Figure 2). The
second reason is the consumption rate of HBFW is less
against BF IV for most block sizes (Figure 3). The figures
also show that GEA has the lowest energy consumption
and runtime of all the algorithms at any size of block; FIW
appears to be the worst with respect to both runtime and

CHUCTEMHBIA AHAJIN3 U IPAKJIAJTHASI THOOPMATHKA

2,2023

SYSTEM ANALYSIS

7

energy consumption. At the same time FW and GEA have
the same energy consumption rate (Figure 3).

1200

Aok ok ke Ak kA A

1100

1000

900

800

700

600

500

30 48 50 75 100 120 150 200 240 300 600 1200 1600 2400

Figure 1. Energy consumption (J) of FW (triangle),
GEA (circle), BFW (square) and HBFW (diamond) algorithms
vs. block size on graph of 4800 vertices

40
D T S S O T T T ' Sty

35
30
25
20

15

30 48 50 75 100 120 150 200 240 300 600 1200 1600 2400

Figure 2. Runtime (s) of FW (triangle), GE4 (circle),
BFW (square) and HBFW (diamond) algorithms vs. block size
on graph of 4800 vertices

33
32
31
30

29

28

27

30 48 50

75 100 120 150 200 240 300 600 1200 1600 2400

Figure 3. Average rate (W) of FI (triangle), GEA (circle),
BFW (square) and HBFW (diamond) algorithms vs. block size
on graph of 4800 vertices

Figure 4 compares the energy consumption
that is caused by algorithms GEA, BFW and HBFW in
comparison with those caused by FI on graphs of 1200
to 4800 vertices. On graph 1200, GEA has the lowest
energy consumption. F W gains against BFW and HBFW
but loses GEA. On larger graphs, FW loses all other
algorithms.

Figure 5 depicts the speedups the GEA, BFW and
HBFW have in comparison with FW. FW is the slowest
algorithm; therefore, all the speedups exceed 1. GEA has
the lowest runtime; as a result, it has the lowest energy
consumption and yields the highest speedup. HBF W has a

lower runtime and therefore a lower energy consumption
than BFW has. It is interesting that there is a graph size
(local optimum at 3600 vertices), for which the speedup
of all three algorithms is the highest.

0.8

0.6

0.4

1200 2400 4800

Figure 4. Relative energy consumption given by GEA (circle),
BFW (square) and HBFW (diamond) algorithms against FIW
vs. graph size

24

0.8

1200 2400 3600 4800

Figure 5. Speedup of GEA (circle), BFW (square) and HBFW
(diamond) algorithms against F/¥ vs. graph size

Figure 6 shows that algorithms FW, GEA, BFW
and HBFW can gain and lose each other regarding the
energy consumption rate.

1200 2400

3600

4800

Figure 6. Energy consumption average rate of GEA (circle),
BFW (square) and HBFW (diamond) algorithms against FIW
vs. graph size

Influence of parallel implementations
of algorithms on processor energy consumption

The parallel multi-threaded implementations
[23,24] of algorithms FW-OMP, BFW-OMP and
HBFW-OMP were generated by the OpenMP compiler.
We have not succeeded to generate an acceptable
parallel implementation for GEA using OpenMP. In the
implementations, the energy consumption is related to all
cores, caches, and other components of the CPU package.

2,2023

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

CUCTEMHBIN AHAJIN3

Figures 7, 8 and 9 show on graph of 4800
vertices how the block size in multi-threaded BFW-
OMP and HBFW-OMP influences the processor energy
consumption. These algorithms consume less energy
than the single-thread GEA and multi-threaded FW-OMP
for block-sizes 48—-300 (Figure 7). For larger block-sizes,
GEA and even FW-OMP can gain BFW-OMP and HBFW-
OMP. 1t is interesting that GEA s energy consumption is

about twice lower than one of FW-OMP’s.

1800
1600
1400
1200
1000

800

600

400

200
30 48 50 75 100 120 150 200 240 300 600 1200 1600 2400

Figure 7. Energy consumption (J) of FW-OMP (triangle),
GEA (circle), BFW-OMP (square) and HBFW-OMP
(diamond) algorithms vs. block size on graph of 4800 vertices

35

30

-
-k---h----A

30 48 50

75 100 120 150 200 240 300 600 1200 1600 2400

Figure 8. Runtime (s) of FW-OMP (triangle), GEA (circle),
BFW-OMP (square) and HBFW-OMP (diamond) algorithms
vs. block size on graph of 4800 vertices

The patterns depicted in Figure 8 for the
algorithms’ runtimes explain the patterns of energy
consumption from Figure 7. The runtimes of BFW-
OMP and HBFW-OMP are the lowest for most block-
sizes. The runtimes of FW-OMP and GEA are close
enough. Figure 9 shows that single-thread GEA s energy
consumption rate is significantly lower than those of
parallelized multiple-threaded HBFW-OMP and BFW-
OMP, which in their turn have lower energy rate than
those of FW-OMP.

It can be observed from Figure 10 that FW-OMP
loses other algorithms on energy efficiency for any
graph-size. The 1-thread GEA gains other multi-threaded
algorithms on graph 1200. On larger graphs, BFW-OMP
and HBFW-OMP consume less energy than GEA and
FW-OMP.

100
90
80 N

Aok ke kA A A
70 -
60
50

40

3 O—0—0—0—0—0—0—0—0—0—0—0—0—0

20
30 48 50

75 100 120 150 200 240 300 600 1200 1600 2400
Figure 9. Average rate (W) of FW-OMP (triangle),

GEA (circle), BFW-OMP (square) and HBFW-OMP (diamond)
algorithms vs. block size on graph of 4800 vertices

0.8

0.6

0.4

[SR

02

1200 2400 3600 4800

Figure 10. Relative energy consumption given by
GEA (circle), BEW-OMP (square) and HBFW-OMP
(diamond) algorithms against FIW-OMP vs. graph size

Figures 11-12 compare multi-threaded omp-
implementations against 1-thread implementations of the
FW, BFW and HBFW algorithms depending on the graph
size. The energy consumption of FW is higher for multi-
threaded than for 1-thread implementations on almost all
graph-sizes (Figures 11). Contrary, the multi-threaded
BFW and HBFW have smaller energy consumption than
their single-thread conterparts.

The speedup by FW is higher up to 3.26 times for
multi-threaded implementations than for single-thread
one (Figures 12). The speedup by parallel BFW and
HBFW reaches 7.89 and 6.30 times. With the increase of
graph size up to 3600 the speedup is being increased and
then decreased.

1.6
14
12
1.0
0.3
0.6
04
02
0.0

1200 2400

3600

4800

Figure 11. Relative energy consumption of OpenMP-
implementations against single -thread ones of F'W¥ (triangle),
BFW (square) and HBFW (diamond) algorithms vs. graph
size

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

2,2023

SYSTEM ANALYSIS

9

9,0

8.0
70 ./.—————.\.

60 e - - - - .. _. *
’. -

5.0

40

3.0 ek Ao A
2.0 AT

1.0

0.0

1200 2400 3600 4800

Figure 12. Speedup of OpenMP-implementations against
single-thread ones of FI (triangle), BFW (square) and
HBFW (diamond) algorithms vs. graph size

Figure 13 shows that the multi-threaded FWW-
OMP algorithm gains up to 46 % the single-thread GEA
algorithm with respect to runtime, but the latter algorithm
gains up to 57 % against the former one with respect to
power consumption.

1.6

1.4 - R A -
12 A" FTTETmeee- A
1.0
0.8
0.6 o
04 e —®
02
0,0
1200 2400 3600 4800

Figure 13. Relative energy consumption (solid line) and
runtime (dashed line) given by GEA against FW-OMP vs.
graph size

Influence of CPU performance state and
operating frequency on energy consumption

Intel Core 17-10700 CPU supports 22
performance states (also known as PX states), where PO
corresponds to top performance in which processor uses
its maximum capabilities and therefore may consume
maximum power. The P1-P21 states correspond
to active states in which processor’s performance
capabilities are truncated to reduce power consumption.
The current PX-state and transitions between the states
are determined by hardware. The operating system
can request a change of state based on workload
requirements and awareness of processor capabilities.
However, in addition to the operating system request,
the final decision is made accounting for different
system constraints such as workload demand and
thermal limits. During all conducted experiments all
CPU cores were residing in the top performance PO
state. However, depending on the type of workload
(different parallel algorithms) the active CPU frequency
and percentage of residency in that frequency changed
significantly.

Figures 14, 15 and 16 depict a percentage
of residency in different CPU frequency intervals
alongside an average frequency of each logical
processor during execution of FW-OMP, BFW-OMP
and HBFW-OMP algorithms respectively on graph of
4800 vertices. Figure 14 shows that algorithm FW-
OMP operates over 60 % of its active time in 4600—
4501 MHz frequency interval, which is a maximum
non-Turbo Boost frequency of the target CPU, and
the rest of its active time (around 20 %) in 4100—
3901 MHz interval. This gives an average operating
frequency of 4400 MHz.

At the same time, both BFW-OMP and HBFW-
OMP (Figures 15 and 16) spend most of the active
time in frequency intervals of 4400-4200 and 3700-
3600 MHz (around 30 % and 25 % of overall time
respectively), which leads to an average operating
frequency of 4000 MHz. Such significant differences in
operating frequencies along with the levels of references
locality in big data processing result in an up to 3 times
smaller energy consumption of both BFW-OMP and
HBFW-OMP algorithms over the FW-OMP algorithm
(see Figure 10).

100 4900
4700

80
4500
60 4300
m 4100
3900

20
3700
0 3500

0 1 2 3 4 5 6 7 8 9 1011 1213 14 15

=1 4600-4501
s Other

— 4100-4001

Average Frequency

— 4000-3901

Figure 14. Logical processors residency % in CPU frequency
intervals (MHz) of FIW-OMP algorithm (stacked bars) and
average CPU frequency (solid line, MHz) on graph of 4800

vertices

100 4900
4700

80
4500
60 4300
m 4100
3900

20
3700
0 500

01 2 3 4 5 6 7 8 9 1011 12 13 14 15

m— 4700-4601
=== 4400-4301
e Other

=1 4600-4501
— 4300-4201
Average Frequency

C—14500-4401
— 3700-3601

Figure 15. Logical processors residency % in CPU frequency
intervals (MHz) of BFW-OMP algorithm (stacked bars) and
average CPU frequency (solid line, MHz) on graph
of 4800 vertices

CHUCTEMHBINA AHAJIN3 U TIPUKJIAJTHASI TH®OPMATHKA

2,2023

CUCTEMHBIN AHAJIN3

4500

4000

0 3500
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 800-4701
1 4500-4401
— 3700-3601

m— 4700-4601
= 4400-4301
mmm Other

1 4600-4501
m— 4300-4201
Average Frequency

Figure 16. Logical processors residency % in CPU frequency
intervals (MHz) of HBFW-OMP algorithm (stacked bars) and
average CPU frequency (solid line, MHz) on graph
of 4800 vertices

Conclusion

Modern multi-core processors are designed to ex-
ploit every possibility to reduce energy consumption. De-
velopment of algorithms and computer programs which
force the processor’s components to consume less energy
is an additional external source of increasing the energy
efficiency of hardware. On four algorithms of search-
ing for shortest paths in large dense directed weighted
graphs and on sequential and parallel implementations of
the algorithms we have measured and analyzed how the
processor energy consumption depends on the algorithm
properties and how the processor accounts for the prop-
erties to tune its behavior with the objective of increasing
its energy efficiency. The paper has found out the most
energy efficient algorithms for searching for shortest
paths in dense graphs.

REFERENCES

1. Andrae A., Edler T. On global electricity usage of communication technology: trends to 2030. Challenges 2015;
6(1):117-157. DOI: 10.3390/challe6010117

2. Khokhriakov S., Manumachu R.R., Lastovetsky A. Multicore processor computing is not energy proportional: An
opportunity for bi-objective optimization for energy and performance. Applied Energy, vol. 268, 2020, 114957, ISSN 0306-2619,
DOI: 10.1016/j.apenergy.2020.114957

3. Basmadjian R. and De Meer H. Evaluating and modeling power consumption of multi-core processors. In Proc. of the
3rd Int’l Conf. on Future Energy Systems (e-Energy 2012). ACM, May 2012, pp. 1-10.

4. Attia K.M., El-Hosseini M.A., Ali H.A. Dynamic power management techniques in multi-core architectures: A survey
study. Ain Shams Engineering Journal, 2017, vol. 8, no. 3, pp. 445-456.

5. Chen K.Y., Chen F.G. The Smart Energy Management of Multithreaded Java Applications on Multi-Core Processors.
International Journal of Networked and Distributed Computing, 2013, vol. 1, no. 1, pp. 53-60.

6. Floyd R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, 5(6), p. 345.

7. Madkour A., Aref W.G., Rehman F.U., Rahman M.A., Basalamah S. A Survey of Shortest-Path Algorithms.
ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

8. Singh A., Mishra P.K. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm. International
Journal of Computer Applications, vol. 107, no. 16, 2014, pp. 23-27.

9. Pettie S. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer Science, 312 (1),
2004: 47-74.

10. Prihozhy A., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data
processing // Proceedings VIII International conference “Big data and advanced analytics”, Minsk: Bestprint, 2022. pp. 56-66.

11. Prihozhy A.A., Karasik O.N. Heterogeneous blocked all-pairs shortest paths algorithm. System analysis and Applied
Information Science, 2017, no. 3, pp. 68-75. DOI: 10.21122/2309-4923-2017- 3-68-75

12. Venkataraman, G., Sahni, S., Mukhopadhyaya, S. A Blocked All-Pairs Shortest Paths Algorithm. Journal of
Experimental Algorithmics (JEA), 2003, vol. 8, pp. 857-874.

13. Park, J.S., Penner, M., and Prasanna, V.K. Optimizing graph algorithms for improved cache performance. IEEE
Trans. on Parallel and Distributed Systems, 2004, 15(9), pp. 769-782.

14. Albalawi, E., Thulasiraman, P., Thulasiram, R. Task Level Parallelization of All Pair Shortest Path Algorithm in
OpenMP 3.0. 2™ International Conference on Advances in Computer Science and Engineering (CSE 2013), 2013, Los Angeles,
CA, July 1-2,2013, pp. 109-112.

15. Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers. IEEE
SOUTHEASTCON, 2014, pp. 1-7.

16. Karasik O.N., Prihozhy A.A. Tuning block-parallel all-pairs shortest path algorithm for efficient multi-core
implementation. System analysis and applied information science, 2022, no. 3, pp. 57-65. DOI: 10.21122/2309-4923-2022-3-57-65

17. Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms.
System analysis and applied information science, 2019, no. 4, pp. 10-18.

18. Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths algorithms. System
analysis and applied information science, 2021, no. 3, pp. 40-50.

2,2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

SYSTEM ANALYSIS 11

19. Prihozhy A.A., Karasik O.N. Cooperative model for optimization of execution of threads on multi-core system.
System analysis and applied information science, 2014, no. 4, pp. 13-20.

20. Prihozhy A.A., Karasik O.N. Cooperative block-parallel algorithms for task execution on multi-core system. System
analysis and applied information science, 2015, no. 2, pp. 10-18.

21. Karasik O.N., Prihozhy A.A. Threaded block-parallel algorithm for finding the shortest paths on graph. Doklady
BGUIR, 2018, no. 2, pp. 77-84.

22. Prihozhy A.A., Karasik O.N. Advanced heterogeneous block-parallel all-pairs shortest path algorithm. Proceedings
of BSTU, issue 3, Physics and Mathematics. Informatics, 2023, no. 1 (266), pp. 77-83. DOI: 10.52065/2520-6141-2023-266-1-13

23. Prihozhy A.A., Karasik O.N. Investigation of methods for implementing multithreaded applications on multicore
systems. Informatization of education, 2014, no. 1, pp. 43-62.

24. Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing. Minsk: BNTU,
2019, 229 p.

JIUTEPATYPA

1. Andrae A. On global electricity usage of communication technology: trends to 2030 / A. Andrae, T. Edler // Challenges
2015. —No. 6(1):117-157. DOI: 10.3390/challe6010117

2. Khokhriakov S. Multicore processor computing is not energy proportional: An opportunity for bi-objective optimization
for energy and performance / S. Khokhriakov, R.R. Manumachu, A. Lastovetsky // Applied Energy. — Vol. 268. — 2020. — Pp.
114957. ISSN 0306-2619. DOI: 10.1016/j.apenergy.2020.114957

3. Basmadjian R. and De Meer H. Evaluating and modeling power consumption of multi-core processors // In Proc. of
the 3rd Int’l Conf. on Future Energy Systems (e-Energy 2012). ACM, May 2012. — Pp. 1-10.

4. Attia K.M. Dynamic power management techniques in multi-core architectures: A survey study / K.M. Attia, M.A. El-
Hosseini, H.A. Ali / Ain Shams Engineering Journal. —2017. — Vol. 8. — No. 3. — Pp. 445-456.

5. Chen K.Y. The Smart Energy Management of Multithreaded Java Applications on Multi-Core Processors / K.Y. Chen,
F.G. Chen // International Journal of Networked and Distributed Computing. — 2013. — Vol. 1. — No. 1. — Pp. 53-60.

6. Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, 5(6), p. 345.

7. Singh, A. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm / A. Singh, P.K. Mishra //
International Journal of Computer Applications. —2014. —Vol. 107, No. 16. — Pp. 23-27.

8. Madkour, A, Aref, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S. A Survey of Shortest-Path Algorithms //
ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

9. Pettie, S. A new approach to all-pairs shortest paths on real-weighted graphs / S. Pettie // Theoretical Computer Science.
312 (1). —2004. — Pp. 47-74.

10. Prihozhy A., Karasik O. Inference of shortest path algorithms with spatial and temporal locality for Big Data
processing // Coopauk matepuanoB VIII MexmyHapoqHo#l HayqHO-TIpaKTHUECKOH KoH(pepeHun. — Munck: becripunt, 2022. —
Pp. 56-66.

11. Ipuxoxuii, A.A. Pa3HOpOAHBIN OIOYHBIH aNTOPUTM MOMCKA KPATIYANIINX ITyTel MEXy BCEMU ITapaMy BEPILUH Ipa-
tda/ A.A. Ilpuxoxwuii, O.H. Kapacuk / CuctemHslit ananu3s u npukiagaas naopmaruka. —2017. — Ne 3.— C. 68-75.

12. Venkataraman, G., Sahni, S., Mukhopadhyaya, S. A Blocked All-Pairs Shortest Paths Algorithm // Journal of
Experimental Algorithmics (JEA). 2003. — Vol. 8. — Pp. 857-874.

13. Park, J.S. Optimizing graph algorithms for improved cache performance / J.S. Park, M. Penner, V.K. Prasanna // IEEE
Trans. on Parallel and Distributed Systems. —2004. — No. 15(9). — Pp. 769-782.

14. Albalawi, E., Thulasiraman, P., Thulasiram, R. Task Level Parallelization of All Pair Shortest Path Algorithm in
OpenMP 3.0 // 2™ International Conference on Advances in Computer Science and Engineering (CSE 2013), 2013, Los Angeles,
CA, July 1-2. - 2013. — Pp. 109-112.

15. Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers // IEEE
SOUTHEASTCON. —2014. — Pp. 1-7.

16. Kapacuk O.H. Hactpoiika 0109HO-TIapajuIeIbHOTO aJTOpUTMa MOMCKa KPAaTKUX MyTeid Ha 3()(EeKTHBHYIO MHOTOS-
nepuyto peanuzanuio / O.H. Kapacuk, A.A. [lpuxoxwuii / CucteMHbIi aHaIM3 U NpuKiIagHas nHpopmaTuka. — 2022. — Ne 3. —
C. 57-65. DOI: 10.21122/2309-4923-2022-3-57-65

17. llpuxoxuii, A.A. MogenupoBaH#e K31 MPSIMOTO OTOOPaYKeHUS M aCCOIIMATUBHBIX KAIII HA aJlTOPUTMaxX ITOMCKa KpaT-
yaifmux myteit Ha rpade / A.A. [lpuxoxwuii / CucTeMHBI aHaMK3 U IpuKiIagHas nHpopmaruka. — 2019. — Ne 4. — C. 10-18.

18. Mpuxoxuii, A.A. OnTUMHU3aUs pa3MeIIeHHs JaHHBIX B HEPAPXMUYCCKOW MaMATH IS OJMIOYHBIX aJITOPUTMOB IIO-
ucka kpardadmmx myteit / A.A. Ilpuxoxwuii / CucteMHBIi aHanu3 W npukinagHas uHGopmatuka. — 2021. — Ne 3. — C. 40-50.
DOI: 10.21122/2309-4923-2021-3-40-50

19. lpuxoxuii, A.A. KoomepaTuBHas MOmenIb ONTHMHU3AIMU BBHINOJHEHUS TOTOKOB Ha MHOTOSACPHOH cucTeme /
A.A. llpuxoxuii, O.H. Kapacuk // CuctemHsIli aHanu3 U npukiagHas uapopmaruka. —2014. — Ne 4. — C. 13-20.

20. Hpsixoxbl, A.A. KaaneparsryHblst 07109Ha-IapaielbHBIA adrapbITMbl PAIIdHHS 3a]a4 Ha MIMAt sApaBbIX cicTamax /
A.A. Ilperxoxsl, A.M. Kapacik // CucTeMHBII aHaTIH3 U pUKIaaHas nHpopmaruka. — 2015. — Ne 2. — C. 10-18.

2,2023 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

12 CHUCTEMHBIN AHAJIN3

21. Kapacux, O.H. [ToTokoBbIii 0:109HO-TIapasIeNbHBII aITOPUTM TIOMCKa KpaTyaimmx myTtei Ha rpade / O.H. Kapacuk,
A.A. lpuxoxuii // Hoxmaget BI'YUP. —2018. — Ne 2. — C. 77-84.

22. lpuxoxuii, A.A. YCOBEpUICHCTBOBAHHBIA Pa3HOPOAHBINA OJOYHO-TIAPAJUICIBHBIA AJTOPUTM IOHMCKA KpaTdaiImmx
nyteit Ha rpade / A.A. Ilpuxoxwuii, O.H. Kapacuxk // Tpynst BI'TY. Cep. 3, ®uzuko-mareMaTnyeckue HayKu ¥ HHQOpMATHKA. —
2023. - Ne 1 (266). — C. 77-83. DOI: 10.52065/2520-6141-20

23. Hpuxoxuii, A.A. lccrnenoBanne METOIOB peaH3alliil MHOTOIIOTOYHBIX MPHIOKEHHH Ha MHOTOSZICPHBIX CHCTEMax /
A.A. Ilpuxoxuii, O.H. Kapacuk // Unpopmaruzanus odpazoBanus. — 2014. — Ne 1. — Pp. 43-62.

24. lpuxoxuii, A.A. AHanus, mpeoOpa3oBaHUe U ONTHMU3AIMA IS BBICOKOIIPOU3BOIUTEIBHBIX IMapaJlICIbHBIX BBIYHC-
nennit. — Munck: BHTY, 2019. — 229 p.

TIPUXO)XHH A.A., KAPACHUK O.H.

BJIUSIHUE AJITOPUTMOB MTOUCKA KPATYAWIIINAX ITYTEX HA
SHEPI'OITIOTPEBJIEHUE MHOTI'OAJEPHBIX ITPOLHECCOPOB

benopycckuii nayuonanvnulii mexnuueckuti ynusepcumem
2. Munck, Pecnybnuxa benapyce

Cospemennbie MHO200€pHblE NPOYECCOPLL, ONEPAYUOHHBIE CUCMEMbl U NPUKIAOHOE NPOSPAMMHOE
obecneuenue pazpadamvl8aiomcs ¢ yuemom mpedo8anull IHepeodIPHexmusHocmuy, Ymo 3HAYUMENbHO CHUNCAEm
oHepeonompebeHue. IHepeodphekmusHOCms NPOPAMMHO20 0DeCneyeHUs 3a8UCUn om ai2opummos, Komopbvie
OHO peanusyem, u Om mo2o, KaK OHO UCNOAb3Yem annapamuvie pecypcewl. B dannou pabome mvl paccmampusaem
HOCIe008AMENbHYIO U NAPATIETbHYIO PEANU3AYUL YemblpeX AI0PUMMO8 NOUCKA KPAMYAtiuux nymetl Ha nionmHslx
636CUICHHbIX 2paghax, uzmepsieM U AHAIUUPYeM UX 6peMsi GbINOJHEHUs, dHepeonompebienue, COCMOSHUL
npouU3800UMenbHOCMU U pabouyio wacmomy npoyeccopa. Hawa yenv — ebiscHums, Kax Kajicoblll U3 aieopummos
enusiem Ha dHepeonompedienue npoyeccopd, KaK npoyeccop u ONepayuoOHHds CUCeMa AHATUUPYIOm padouyo
HA2PY3KY U NPeONPUHUMAIONM OeUCMEUsL N0 YEETUUEHUIO UL YMEHbULEHWIO pabodell Yacmombl U OMKIIOYeHUIO s0ep,
a maxoice KaKue aneopummbvl RPeonoYmumesnbHee UCHOIb308aNMb 6 NOCICO08AMENbHOM U NAPALICTbHOM PENCUMAX.
Aneopumm na ocnoge pacuiupenus epaga (GEA) oxasanca naubonee suepeospghekmusHbiM cpeou anzopummos,
peanuzyemuix nociedosamenvro. Knaccuveckuil aneopumm Duotioa-Yopwanna (FW) nompebun 6 0sa pasa 6onviue
onepeuu, a orounvie 00HopooHslil (BFW) u neoonopoousiti (HBFW) aneopummvr nompeobuiu na 52,2 % u 21,2
% 6oavute snepeuu, yem GEA. Bce sxcnepumenmol nposoounucey Ha 8-s0eprom npoyeccope Intel Core i7-10700.
Hapannenvnvie peanuzayuu anrcopummos BEW u HBFW 6vicmpee u snepeoshgpexmusnee napaiienbHol peaiu3ayuu
FW. Onu nompebunu menvuie sHepeuu, uem ux nociedogamenvhvie ananoeu. Ilocredosamenvhbiil aneopumm
GEA nompebun menvute snepeuu, yem napaiieivhviil FW, xoms npouspan nocieonemy no pemeHu 8blnoJIHeHUs.
Mmnoeosioepuwiii npoyeccop evitnoansn FW co cpedneii uacmomout 4235 MIy, u evinoansin BFW u HBFW ¢ menvuieti
yacmomotl 4059 MI'y u 4035 MI'y coomeemcmeaenno.

Kniouegvie cnosa: mnocosioepHulii npoyeccop, aneopumm Kpamdauuux nymei, 00HONOMOYHOe NPUTLOAHCEHUE,
MHO2ONOMOUHOE NPUNOANCEHUE, BPEMS BbINOAHEHU, JHepeonompebnenue, OpenMP

Anatoly Prihozhy is full professor at Computer and system software department of Belarus na-
tional technical university, Doctor of Science (1999) and Full Professor (2001). His research in-
terests include programming and hardware description languages, parallelizing compilers, and
computer aided design techniques and tools for software and hardware at logic, high and system
levels, and for incompletely specified logical systems. He has over 300 publications in Eastern
and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer
Academic Publishers, World Scientific and others have published his works.

Karasik Oleg is a Technology Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk,
Belarus, and PhD in Technical Science. His research interests include parallel multithreaded ap-
plications and the parallelization for multicore and multiprocessor systems.

CUCTEMHBIA AHAJIM3 U TIPUKJIAJTHASI UHOOPMATHUKA 2,2023

