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 Finding shortest paths in a weighted graph is one of the key problems in computer-science, which has numerous 
practical applications in multiple domains. This paper analyzes the parallel blocked all-pairs shortest path algorithm at the 
aim of evaluating the influence of the multi-core system and its hierarchical cache memory on the parameters of algorithm 
implementation depending on the size of the graph and the size of distance matrix’s block. It proposes a technique of tuning the 
block-size to the given multi-core system. The technique involves profiling tools in the tuning process and allows the increase of 
the parallel algorithm throughput. Computational experiments carried out on a rack server equipped with two Intel Xeon E5-2620 
v4 processors of 8 cores and 16 hardware threads each have convincingly shown for various graph sizes that the behavior and 
parameters of the hierarchical cache memory operation don’t depend on the graph size and are determined only by the distance 
matrix’s block size. To tune the algorithm to the target multi-core system, the preferable block size can be found once for the graph 
size whose in-memory matrix representation is larger than the size of cache shared among all processor’s cores. Then this block-
size can be reused on graphs of bigger size for efficient solving the all-pairs shortest path problem.
 Keywords: shortest path; Floyd-Warshall algorithm; blocked algorithm; multithreaded application; multi-core system; 
hierarchical cache memory; parallelism; throughput.

 Introduction

The problem of finding a shortest path 
exists for ages. It has a long history of being 
deeply investigated by different researchers to 
solve various practical problems, starting from 
solving mazes and ending by optimization of 
networks [1,2]. The shortest path problem has two 
formulations: finding a shortest path between a 
source and each other vertex in a weighted graph 
(Single Source Shortest Path – SSSP) and finding 
shortest paths between all pairs of vertices (All 
Pairs Shortest Path – APSP). Dijkstra’s algorithm 
solves SSSP and has a O(n2) computational 
complexity. Floyd-Warshall’s algorithm solves 
APSP and has O(n3) computational complexity. 
Both problems are computationally expensive for 
large graphs. On graph of over 10000 vertices the 
algorithms require impractical amount of time, 
even on modern hardware. That is why, effective 
parallelization of the algorithms on multi-core 
systems is an important computational problem. 

The algorithm parallelization requires 
highly qualified professionals [3] to adapt 
algorithm’s mechanics and implement it in a way 
to meet features of the target machine, which is a 
separate challenge due to the increasing number 
of cores and their architectural differences [4]. 
The effective algorithm parallelization depends 
on multiple factors including (but not limited 
to) the distribution of worker threads between 
processor’s cores [5,6] and optimization of 
hierarchical cache memory usage [7]. 

In this paper we are focusing on 

analyzing the block-parallel APSP algorithm 
and tuning it with respect to the graph and 
block sizes to account for the multi-core system 
architecture and its hierarchical cache memory 
with the objective of increasing the algorithm 
implementation throughput.

Block-parallel shortest paths algorithm

The Floyd-Warshall algorithm [8] ope-
rates on a cost adjacency matrix D[N × N], where 
N is a number of vertices in a graph. The matrix 
is initialized with weights of the edges in such 
a way that element Dij contains a weight of the 
edge between vertices i and j (upon completion, 
element Dij will contain a length of the shortest 
path between the vertices). When an edge is 
absent the value of Dij is ∞. The algorithm 
recalculates all elements of D within each of N 
iterations of a loop along the graph vertices.

The authors of [9] proposed a blocked 
(also known as “tiled”) version of the Floyd-
Warshall algorithm. This version splits matrix 
D into blocks of size S × S, effectively creating 
a matrix B[M × M] of blocks, where equality 
M ∙ S=N  holds. It performs M iterations, each 
consisting of three phases (see Figure 1) of 
calculating the “diagonal” block (depends on 
itself), 2 ∙ (M-1) ”cross” blocks (each depends on 
itself and the corresponding “diagonal” block), 
and (M-1)2 “peripheral” blocks (each depends 
on the corresponding vertical and horizontal 
“cross” blocks. 
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In [10–13], the authors shown that 
the blocked Floyd-Warshall algorithm can 
be parallelized due to all “cross” blocks 
are calculated mutually in parallel and all 
“peripheral” blocks are calculated mutually 
in parallel too. The “diagonal”, “cross” and 
“peripheral” blocks are calculated sequentially. 
Algorithm 1 describes the resulting block-
parallel Floyd–Warshall algorithm by means of 
OpenMP facilities.

It should be noted that the order of 
block calculation within a loop iteration 
along m doesn’t have to match the above-
described calculation phases. Instead, it can 
be purely driven by the data dependencies 
among blocks [14–17]. Des-pite differences 
in data dependencies, which potentially can be 
exploited [18], all blocks are calculated using 
the same procedure (see Algorithm 2). 

Problem formulation

Although the computational complexity 
of both the basic and blocked Floyd-Warshall 
algorithms is the same, the blocked algorithm 
contrary to the basic one obtains a property 
of spatial locality, which is very important 
regarding the reduction of multiple data 
transfers between fast and slow memory levels 
in a multi-core system.

In the basic Floyd-Warshall algorithm, 
matrix D is allocated in row-major style in 
main memory. For large graphs, the matrix size 
exceeds the last level cache (LLC) size, which 
leads to a significant memory traffic because 
the algorithm reads (and

Figure 1. Illustration of calculation phases of block-parallel Floyd-Warshall algorithm on first two itera-
tions (steps)
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probably writes) every element of D within 
every iteration. This may cause a complete 
or partial reload of the matrix from the main 
memory in each iteration and may lead to pore 
performance. 
The blocked Floyd-Warshall algorithm performs 
computations over blocks, with at most three 
active blocks at a time. Due to spatial locality, 
it can improve the performance on both small 
(when D doesn’t’ fit in L1 processor cache) and 
large (when D doesn’t fit in LLC) graphs. 
In [7], the authors shown that on state-of-the-
art processors of that time the algorithm can 
reduce the process-memory traffic by a factor 
of S. In [9], to minimize L1 cache misses the 
authors proposed to choose the size S of block 
which meets the following inequality:

3∙  E ∙ S2 ≤ C 
(1)

where E is the size of matrix element and C is the 
size of L1 cache. The proposed approach works 
for serial implementations of the algorithm.
Nowadays, the situation has changed with 
respect to finding the matrix block size as the 
size of processed graphs has grown, modern 
computing systems have many levels of 
hierarchical memory, each level’s volume 
can vary from one processor to another, and 
the number of cores and their parallelization 
potential has increased. New techniques of 
searching for an optimal (or preferable) size 
of block of large-size matrices have to be 
developed.
In this work we develop a multicore-system 
profiler-based technique [17,19,20] to analyze 
the parallel operation of cores within one 
processor and the behavior of many-level 
cache memory to tune the size of block in the 
block-parallel all-pairs shortest path algorithm 
with the aim of increasing the implementation 
throughput. 

Algorithm profiling on multi-core system

To understand the dependence of the 
algorithm execution time on the multi-core 
system architecture and the organization of 
its hierarchical cache memory we used the 
Intel VTune Profiler 2021.8. The profiler 
has facilities to measure the following PMU 
(Performance Monitor Unit) MEM_LOAD_

UOPS_RETIRED events:
 • L1_HIT_PS – indicates L1 hit.
 •cL2_HIT_PS – indicates L2 hit (also 
means L1 miss)
 • L3_HIT_PS – indicates L3 hit (also 
means L2 miss)
 • L3_MISS_PS – indicates L3 miss and 
access to RAM.
These events as well as the execution time 
were collected all at once without multiplexing 
[19] on every run of the algorithm. In all 
experimental results, the value of each event is 
a sum of all such events recorded on all cores 
and processors during a sample interval [20]. 
In the paper, we report results obtained on a 
rack server equipped with two Intel Xeon E5-
2620 v4 processors containing 8 cores and 16 
hardware threads each. Every core is equipped 
with a private L1 (32 KB) and L2 (256 KB) 
caches, and all processor cores share inclusive 
L3 (20 MB) cache. Table 1 reports the cache 
latencies. Similar profiling results were 
obtained on other processors. The algorithm 
was implemented in C++ language using GNU 
GCC compiler v10.2.0 and parallelized by 
means of OpenMP 4.5. 

We conducted a series of experiments on 
randomly generated directed graphs. Here we 
report results for graphs of 4800, 9600 and 
19200 vertices. It should be noted that the 
matrix D size representing a graph of 4800 
vertices is already larger than the L3 cache size. 
Every experiment was repeated multiple times 
and the results of computation were verified. 
To ensure that the VTune profiler doesn’t 
introduce significant noise, the execution time 
was measured with and without the profiler 
attached. 
All experiments were conducted on block 
sizes as follows: 30x30, 48x48, 50x50, 75x75, 
100x100, 120x120, 150x150, 160x160, 
192x192, 200x200, 240x240 and 300x300. All 
block-sizes divide the matrix into blocks of 
equal size without remainders. 

Table 1. Sizes and approximate latencies of L1, L2 
and L3 caches for Intel Xeon E5-2620 v4 processor
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Results of algorithm profiling

Tables 3, 4, and 5 report the block-parallel 
algorithm execution time and the number of 
L1, L2, L3 and main memory hits obtained as 
an average of 10 runs with the VTune profiler 
attached. “Break points” (block sizes where 
the algorithm no longer efficiently uses current 
level of cache and starts to rely on the next 
level) represented by → are the most interesting 
information in the tables. For instance, the 
block-size of 75x75 is a “break-point” because 
three blocks of the size don’t fit in L1 cache 
(see Table 2), therefore the algorithm starts to 
more extensively use L2 cache. The number of 
L1 cache hits is getting lower and the number of 
L2 cache hits increases significantly (around 5 
times). The number of L3 hits reduces around 2 
times and L3 miss around 3 times, which means 
less L2 misses. We can also see a stabilization 
of the number of L1 cache hits on larger block 

sizes (from 100 to 300). The standard deviation 
over 10 runs of the algorithm is on average 
1.23% for L1 hits for block sizes 100 – 300 
on 4800 vertices of graph, is 1.55% on 9600 
vertices and 1.93% on 19200 vertices. 
The block size of 150x150 is the second “break 
point” (between L2 and L3 caches) where the 
number of L2 cache hits is reduced (around 1.5 
times) and the number of L3 hits is significantly 
increased (around 2.5 times). Then the number 
of L2 hits continuously grows, the number of L3 
hits temporary grows (with changing to gradual 
reduction after the block size of 192x192) and 
the number of L3 miss continuously reduces. 
The increase of L2 hits is caused by the fact that 
L1 cache can’t hold even a fraction of block 
(for instance, the L1 cache contains only 1/3 of 
a block of 160x160 size). The behavior of L3 
cache is associated with the adaptation of L2 
cache to the 

Table 2. Number of blocks fit in each level of cache vs. block size

Table 3. Event count vs. block size for block-parallel algorithm on a graph of 4800 vertices; profiler con-
tribution is up to 1.70%; arrow (→) represents “break point”; bold indicates maximum number of events; 

filled cell indicates minimal execution time.

Table 4. Event count vs. block size for block-parallel algorithm on graph of 9600 vertices; profiler contri-
bution is up to 1.54%.
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Table 5. Event count vs. block size for block-parallel algorithm on graph of 19200 vertices; profiler con-
tribution is up to 1.74%.

Table 6. Caches and main memory hits in percent over the total number of events (L1 + L2 + L3 hits + 
L3 miss) for graph of 4800 vertices vs. block size

Table 7. Hits of L1, L2 and L3 cahes in percent over the cache related events for graph of 4800 vertices 
vs. block size

situation when it can’t fit three blocks, then 
two blocks, and in the end a single block. 
The continuously reduction of L3 misses is 
explained by the fact that with increasing the 
block-size almost all requests are served by L2 
or L3 caches (see Table 2).
Table  depicts shares in percent of the cache hits 
and misses vs. block size for the graph-size of 
4800 vertices. L1 cache processes from 99.37 % 

down to 97.87 % of data requests depending on 
the block-size. The L2 and L3 caches process 
much less requests. Table 7 shows that the less 
share of requests to L2 cache is processed at the 
L2 level against L1 cache. The same concerns 
L3 cache. The number of requests to the main 
memory falls with the block-size growth. 
Shares for graphs of 9600 and 19200 vertices 
are close to those of graph of 4800 vertices.



62           ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА                                     3, 2022

Figure 2. Normalized maximum count (bold figures in Tables 3-5) of a) L1 hits b) L2 hits c)  L3 hits and d) L3 
misses across graphs of 4800 (solid), 9600 (dashed) and 19200 (dashed dotted) vertices vs. block-size

 The results obtained on two Intel Xeon 
E5-2620 v4 processors (see Figure 2) and one Intel 
Core i5-6200U clearly demonstrate that the cache 
usage by the algorithm depends mainly on the block 
size and almost doesn’t depend on the graph size. 
Moreover, the maximum values for L1, L2, L3 hits 
and L3 miss shown in bold in Tables 3–5 correspond 
to the same block sizes for all of the graphs. Figure 
3 shows that the changes in execution time follow 

the pattern that is similar to one of the cache usages: 
they get increased or reduced in the same manner.
It is important to understand why after reaching the 
block size of 120x120 the execution time continues 
to increase while the L3 misses decrease and L2 and 
L3 hits increase. An explanation can be seen in the 
latencies of the L1, L2 and L3 cache levels depicted 
in Table 1.

Figure 3. Normalized minimum execution time from Tables 3–5 for graphs of 4800 (solid), 9600 (dashed) and 
19200 (dashed dotted) vertices

Block-parallel algorithm tuning technique

 Now we can formulate the block-parallel 
algorithm tuning technique targeting the shortest 
paths problem on large graph and increasing the 
throughput of the multi-core systems. The technique 
consists of the steps as follows:
 1. Studying the features of structure and 
parameters of the multi-core system.
 2. Attaching a multi-core system profiler to 
the algorithm program code.
 3. Selecting or generating a weighted graph 
which in-memory matrix representation is larger 
than the last level cache size.
 4. Profiling the algorithm on the graph for 
various block size.
 5. Finding the block-size giving a minimum 
of algorithm execution time.
 6. Solving the shortest paths problem on 
larger graphs with high throughput using the block-
size determined on step 5. 

Conclusion

 The Floyd-Warshall block-parallel all-pairs 
shortest path algorithm requires a tuning of the block-
size to modern multi-core system architectures at 
the aim of increasing throughput. The main result 
of the paper is the proposed technique of finding an 
optimal (preferable) block size experimentally on 
a smaller graph by means of a multi-core system 
profiler and then using the found block-size for 
multiple solving with higher throughput the shortest 
paths problem on large graphs. To obtain the result 
we have analysed the hierarchical cache memory 
usage by the algorithm and have demonstrated 
that it doesn’t depend on the graph size but instead 
depends on the selected block size. We have also 
experimentally demonstrated that the optimal 
block size is no longer can be found in the same 
way as it was done for the sequential algorithm, 
therefore, leaving discovery of optimal block size 
to experimental lookup and future research.  
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О. Н. КАРАСИК, A. A. ПРИХОЖИЙ

НАСТРОЙКА БЛОЧНО-ПАРАЛЛЕЛЬНОГО АЛГОРИТМА ПОИСКА КРАТКИХ 
ПУТЕЙ НА ЭФФЕКТИВНУЮ МНОГОЯДЕРНУЮ РЕАЛИЗАЦИЮ

Белорусский национальный технический университет

 Поиск кратчайших путей во взвешенном графе — одна из ключевых задач компьютерных наук, 
которая имеет множество практических приложений в различных областях. В данной работе анализируется 
блочно-параллельный алгоритм поиска кратчайших путей с целью оценки влияния многоядерной системы 
и ее иерархической кэш-памяти на параметры реализации алгоритма в зависимости от размера графа и 
размера блока матрицы расстояний. В ней предлагается метод настройки размера блока на особенности 
многоядерной системы. Метод предполагает использование инструментов профилирования в процессе 
настройки и позволяет увеличить производительность параллельного алгоритма. Вычислительные 
эксперименты, проведенные на стоечном сервере, оснащенном двумя процессорами Intel Xeon E5-2620 v4, 
состоящих из 8 ядер и 16 аппаратных потоков каждый, убедительно показали для различных размеров 
графов, что поведение и параметры работы иерархической кэш-памяти слабо зависят от размера графа и 
определяются размером блока матрицы расстояний. Чтобы настроить алгоритм на целевую многоядерную 
систему, предпочтительный размер блока может быть найден один раз для графа, размер представления 
которого превышает размер кэша, совместно используемого ядрами процессора. После этого найденный 
размер блока можно многократно использовать для эффективного решения задачи о кратчайших путях на 
графах большего размера.
 Ключевые слова: кратчайший путь;  алгоритм Флойда-Уоршелла;  блочный алгоритм; много-
поточный алгоритм; многопроцессорная система; иерархическая кэш память, параллелизм.
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