
40 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 1, 2022

UDC 004.4-004.9
PRIHOZHY А.А.

EXACT AND GREEDY ALGORITHMS OF ALLOCATING EXPERTS TO MAXIMUM
SET OF PROGRAMMER TEAMS

Belarusian National Technical University

 The allocation of experts to programmer teams, which meet constraints on professional competences relat-ed to programming technol-
ogies, languages and tools an IT project specifies is a hard combinatorial problem. This paper solves the problem of forming the maximum number
of teams whose experts meet all the constraints within each team. It develops and compares two algorithms: a heuristic greedy and exact optimal.
The greedy algorithm iteratively solves the set cover problem on a matrix of expert competences until can create the next workable team of remain-
ing experts. The paper proves that the allocation greedy algorithm is not accurate even if the set cover algorithm is exact. We call the allo-cation
algorithm as double greedy if the set cover algorithm is greedy. The exact algorithm we propose finds optimal solution in three steps: generating
a set of all non-redundant teams, producing a graph of team’s independency, and searching for a maximum clique in the graph. The algorithm of
generating the non-redundant teams traverses a search tree con-structed in such a way as to guarantee the creation of all non-redundant teams
and absorbing all redundant teams. The edges of the non-redundant team independency graph connect teams that have no common expert. The
maximum clique search algorithm we propose accounts for the problem and graph features. Experimental results show that the exact algo-rithm
is a reference one, and the double-greedy algorithm is very fast and can yield suboptimal solutions for large-size allocation problems.

 Keywords: programmer, team, competence, expert, allocation problem, optimization.

Introduction
In the rapidly developing information technology industries,

there is need to assemble teams of growing complexity to tackle
problems on a larger scale than ever before. Agile is a set of values
and principles of developing software and finding solutions over
joint efforts of development teams and customers [1, 2]. Agent-
based evolutionary optimization methods [3] aim at performing
the management of teams.

The process of allocating tasks to teams has not received much
attention. In [4], the authors describe the process of task allocation
as including three mechanisms of workflow across teams and five
types of task allocation strategies. In [5], the authors emphasize
that a successful software development team has to be made up of
competent developers. Competency is the ability of a developer
to perform a job properly. It is a combination of knowledge, skills
and attitudes used to improve performance. In [6-8], the authors
proposed platforms that increase team’s productivity and efficien-
cy for various tasks and projects. In [9], a method for formalizing
and evaluating the competency of individual programmers and
entire programmer teams was proposed. Since the programmer
allocation problem is combinatorial, the goal of works [10 - 12]
was to develop a genetic-algorithm-based meta-heuristic approach
for finding acceptable solutions of large-size problems at different
requirements to competences of programmers.

In the paper, we formulate a combinatorial problem and pro-
pose a heuristic greedy and an exact optimal algorithm of allocat-
ing experts to a maximum set of programmer teams, assuming that
two teams may not share the same expert. The contribution of the
paper is as follows:

1. An algorithm of generating feasible non-redundant teams
of experts is proposed;

2. A graph of non-redundant teams independency is intro-
duced; the experts allocation problem is solved by searching for a
maximum clique in the graph;

3. The experimental results obtained show that the heuris-
tic greedy algorithm is very fast and gives good enough solutions
against the exact algorithm.

Combinatorial problem formulation
Let C = {c1,…, cm} be a set of competences Joseph Sijin pro-

posed in [13] in order to create the programmer competency ma-
trix and to estimate the qualification of candidates to IT projects.
He introduced four predefined competency levels L0, L1, L2 and
L3, and formulated requirements for each of them regarding all the
competences.

Let P = {p1,…pn} be a set of programmers who desire to work
on an IT project and have evaluated the competency level on
each of the topics. Table 1 describes a sample of 12 programmers
characterized by 12 competences. It indicates the competency
Level(p, c) of each programmer p for each competence c.

Usually, each IT project establishes a constraint Level(p, c) ≥ lc
for the level of each competence c ∈ C at least one programmer p
of the team must have. We also use notation l for the overall com-
petence: lc = l for all c ∈ C.

We qualify a programmer who meets the constraint on at least
one competence as expert. The working team must have an expert
for each competence. Applying the constraint of l = L2 to Table
1 generates Table 2, which describes a matrix D[n×m] of expert
competences. Symbol ‘+’ indicates competences the experts have.

Definition 1. A team t is a subset of programmers t P such

DATA PROCESSING AND DECISION-MAKING 41

1, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

that

 (1)

Definition 2. A team s is redundant if at least one programmer
r ∈ s exists such that team t = s \ {r} meets (1).

Definition 3. A team t is non-redundant if for any programmer
r ∈ t inequality (2) holds.

 (2)

Definition 4. A team t absorbs team e if t ⊂ e.
Definition 5. Teams ti and tj are independent if ti tj = .

Let W be a set of feasible allocations of experts of P to a set T
of workable teams, assuming that size |T | is not defined in advance.
Our objective is to solve the following combinatorial problem:

 (3)

subject to

 (4)

Dp is a set of competences of expert p. Equation (5) estimates
an upper bound of the team count.

 (5)

where dpc = 1 if Dpc = ‘+’. According to Table 2, upper(|T|) = 4.

Greedy algorithm of solving the problem

 The greedy Algorithm 1 we propose heuristical-ly allo-
cates experts to teams and finds a subopti-mal solution in general
case. The algorithm itera-tively solve the well-known set cover
problem [14], which is NP-complete, until the next worka-ble
team cannot be created of the remaining ex-perts. Initially set R
consists of all experts of set P, and set T of teams is empty. Each it-
eration of the loop forms a team of minimum size, which covers all
competences, by solving the set cover problem. Then it removes
experts of team from R and add the team to T. If team is empty, the
algorithm ter-minates its operation.

Algorithm 1 does not guarantee obtaining the accurate solu-
tion. Table 3 describes matrix D, which proves the assertion. Figure
1a shows three non-redundant teams that can be generated from D.
Algorithm 1 selects team t0 at the first iteration and returns T = {t0}
after the second iteration. Figure 1b shows that the maximum-size
solution is T = {t1, t2}, which represents a maximum clique of a
team independency graph GD. As Algorithm 1 is a heuristic one,
it is reasonable to solve the set cover problem by the greedy algo-

rithm [15]. In this case, Algorithm 1 becomes the double-greedy
heuristic algorithm.

Generation of feasible non-redundant teams
A team search tree depicted in Figure 2 is a directed labeled

acyclic graph supporting the generation of redundant and all
non-redundant workable teams. All nonterminal vertices (without
fill) of the tree correspond to programmers. There are four types of
terminal vertex: a redundant workable team (in red); a non-redun-
dant team (in green); a non-workable team which does not cover
all competencies of C (in black); and a tree’s branch represented
as single vertex (in grey). There are two types of edge in the tree:
on-edge (right outgoing solid line) and off-edge (left outgoing dash
line). A path from root to a leaf tk determines the team members. If
the path includes an outgoing on-edge of vertex pi then pi ∈ tk, if it
includes an off-edge then pi ∈ tk.

Algorithm 1 does not guarantee obtaining the accu-
rate solution. Table 3 describes matrix D, which proves
the assertion. Figure 1a shows three non-redundant teams
that can be generated from D. Algorithm 1 selects team t0
at the first iteration and returns T = {t0} after the second
iteration. Figure 1b shows that the maximum-size solu-
tion is T = {t1, t2}, which represents a maximum clique of
a team independency graph GD. As Algorithm 1 is a heu-
ristic one, it is reasonable to solve the set cover problem
by the greedy algorithm [15]. In this case, Algorithm 1
becomes the double-greedy heuristic algorithm.

42 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 1, 2022

Figure 2 – Non-redundant teams search tree
Algorithm 2 uses four operation modes: FOR-

WARD, BACKWARD, SUCCESS, and FAILURE. In
mode FORWARD, it switches to mode SUCCESS if
the programmers collected in stack SS have set C of
competences. If the depth of stack SM is equal to n, the
mode switches to FAILURE. Otherwise, the algorithm
keeps the mode, pushes the topm programmer in stack
SS adding programmer’s competences to the current
team, and passes from programmer topm to program-
mer topm + 1 through on-edge. In mode SUCCESS,
the algorithm gener-ates new team, possibly absorbs
the previously created teams of set T, adds the new
team to T, and switches to mode BACKWARD. In
BACKWARD, the algorithm performs backtracking
while SM has off-edge at top. If the depth is equal to
0, the algo-rithm terminates operation returning T. If
a record with on-edge found, the algorithm replaces it
with off-edge and switches to the FORWARD mode.

In mode FORWARD, the algorithm switches to FAILURE. if
it has generated an unworkable team passing through on-edges.
In mode FAILURE, it performs backtracking over on-edges
using both stacks to find a vertex, which allows the traversal of
alternative paths in the search tree and allows the generation of
alternative teams in the FORWARD mode.

The search tree generated by Algorithm 2 is de-picted in
Figure 2. Totally, the tree includes 237 terminal team-vertices that
represent 190 redun-dant (in red) and 47 non-redundant (in green)
teams. The figure shows only part of generated branches, grey
leafs represent tree branches con-taining other teams.

A path from tree root to team-leaf determines the team mem-
bers. For instance, the path to t9 includes nonterminal vertices
0,…,7. Vertices 0, 1, 4, 5 and 7 have outgoing on-edges (solid line).
Vertices 2, 3 and 6 have outgoing off-edges (dash line). Therefore,
t9 = {p0, p1, p4, p5, p7}.

In the search tree, dot-line edges show absorbing one team
by other team. For example, team t9 has outgoing dot-line edge
pointing to team t2 = {p0, p1, p4, p5, p6, p7}. Therefore, t9 absorbs t2
because t9 t2.

The search tree has properties as follows:
1. In any path from root to leaf, the competences of predeces-

sors does not include all competences of successors.
2. The competences of successors may completely include the

competences of a predecessor.
3. As a result, a team may only absorb other redundant team

located to right in the search tree.
4. Algorithm 2 finds all non-redundant teams for the given set

of programmers and absorbs all redundant teams.
Figure 3 depicts a set of 47 non-redundant teams Algorithm 2

DATA PROCESSING AND DECISION-MAKING 43

1, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

has generated over the tree from Figure 2. The rows correspond
to teams, and the columns correspond to programmers. Value 1
indicates including a pro-grammer in a team.

Exact algorithm based on non-redundant team
independency graph

In the undirected non-redundant team independency graph
GD = (T, D), T is a set of non-redundant teams, and D is a set of
edges (ti, tj) such that ti tj = . Figure 4 depicts an adjacency ma-
trix of the graph generated for teams from Figure 3.

To allocate exactly experts to maximum number of teams, we
find the maximum clique of graph GD. Algorithm 3 we propose
takes into account the graph features. Its inputs are matrix D and
graph GD, and its output is a maximum set Allocate of indepen-
dent teams. It calculates an upper bound of the set size using (5)
and calculates a lower bound by running the greedy Algorithm 1.
Then, it orders the graph vertices by vertex power descending, and
modifies GD to G’D.

The algorithm checks the equality of the lower and upper
bounds and returns Allocate as optimum. Otherwise, it organizes
a loop to find the largest team size from |LowerBound| + 1 to Up-
perBond|. To speed up the search, function GenerateSubgraph re-
duces G’D to G”D of smaller size, CliqueSize, and function Search-
Clique finds a required clique.

Algorithm 4 searches for a clique of the required CliqueSize
in sub-graph G”D. It forms the clique by selecting a vertex from
1 to |T”|-CliqueSize+1 and adding other mutually adjacent verti-
ces. To perform combinatorial search, it uses a Stack. All vertices
pushed in the Stack are mutually connected. When the stack depth
reaches CliqueSize the search is over and the clique is extracted
from the stack. Otherwise, the algorithm checks if it has visited all
neighbors of the vertex assigned to record top – 1. If yes, it pops
the top record and returns to the previous vertex. If no, it passes to
the next neighbor nb. If nb is adjacent to all previous vertices in the
Stack, the algorithm pushes nb in the next record and repeats the
described steps.

In Figure 4, the filled four rows and four columns describe the
maximum clique that represents an optimal solution including four
teams as follows: t13 = {p0, p7}, t30 = {p1, p6, p9, p10}, t38 = {p2, p4, p8}
and t40 = {p3, p5}.

Figure 3 – Non-redundant teams of experts from Table 2

44 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 1, 2022

Figure 4 – Adjacency matrix of non-redundant teams independency graph GD

Experimental results
We have developed a computer program that implements both

the greedy and exact algorithms of allocating experts to teams.
Table 4 reports experimental results obtained on six runs of the
program on various expert samples of 20 programmers and 20
competences. The samples differ by minimum (upper bound of
teams count) and average number of competences per expert (third
and fourth parameters in the table). The increase of upper bound
from 4 to 14 causes the growth of the maximum team count (exact
solution) from 4 to 10, the greedy lower bound from 3 to 9, the
competence count per expert from 5.8 to 15.8. The difference be-
tween the upper bound and the

optimal solution has increased from 0 (run 1) to 4 (run 6).The
greedy solution is one team less on average, although it is opti-
mal for run 2. The number of generated non-redundant teams has
increased from 665 to 930 and then has decreased to 204. The
number of all teams (redundant and non-redundant) has been larg-
er over the number of non-redundant teams by 70.8 downto 3.5
times.

Conclusion

The paper has formulated a combinatorial problem of allocat-
ing experts to maximum set of programmer teams accounting for
professional competences. In our work, to tackle the problem we
have developed two algorithms: greedy heuristic and exact opti-
mal. The first algorithm is fast and solves the problem using set
cover problem solutions. Although the second algorithm is slow,
it is a criterion for the evaluation of heuristic algorithm quality.
The developed software allocates experts to teams and allows for
obtaining experimental results on various-size input data. The fast
double-greedy algorithm slightly loses to the exact algorithm by
quality, but is applicable to large-size combinatorial problems.

REFERENCES
 1. Joshi, S. Agile Development - Working with Agile in a Distributed Team Environment / S. Joshi // MSDN Magazine, 2012,
Vol.27, No.1, pp.1-6.
 2. Collier, K.W., Agile Analytics: A Value-Driven Approach to Business Intelligence and Data Warehousing. – Pearson Edu-
cation, 2012. – 74 p.
 3. Muller, J.P., Rao, A.S., Singh, M.P. A Teams: An Agent Architecture for Optimization and Decision-Support, Proceedings
5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998, pp. 261-276.
 4. Masood Z., Hoda R., Blincoe K. (2017) Exploring Workflow Mechanisms and Task Allocation Strategies in Agile Soft-
ware Teams. In: Baumeister H., Lichter H., Riebisch M. (eds) Agile Processes in Software Engineering and Extreme Programming. XP
2017. Lecture Notes in Business Information Processing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6_19.
 5. R. Britto, P. S. Neto, R. Rabelo, W. Ayala and T. Soares, “A hybrid approach to solve the agile team allocation prob-
lem,” 2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1-8, doi: 10.1109/CEC.2012.6252999.

DATA PROCESSING AND DECISION-MAKING 45

1, 2022 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

 6. Wrike [Электронный ресурс] – Режим доступа: https://www.wrike.com/, – Загл. с экрана – Яз. англ. Дата доступа –
28.10.2021.
 7. Flow [Электронный ресурс] – Режим доступа: https://www.getflow.com/, – Загл. с экрана – Яз. англ. Дата доступа –
28.10.201
 8. Gutirrez, J. H., Astudillo, C. A., Ballesteros-P?rez, P., Mora-Meli?, D. and Candia-V?jar, A. (2016) The multiple
team formation problem using sociometry. Computers and Operations Research, 75. pp. 150-162. ISSN 0305-0548 doi: https://doi.
org/10.1016/j.cor.2016.05.012
 9. Barricelli, N.A. Symbio genetic evolution processes realized by artificial methods / N.A. Barricelli // Methodos, 1957, pp.
143–182.
 10. Prihozhy A.A., Zhdanouski A.M. Method of qualification estimation and optimization of professional teams of pro-
grammers. «System analysis and applied information science». – 2018, No. 2, pages 4-11. https://doi.org/10.21122/2309-4923-2018-2-
4-11
 11. Prihozhy, A. Genetic algorithm of optimizing the size, staff and number of professional teams of programmers / A.
Prihozhy, A. Zhdanouski // Open Semantic Technologies for Intelligent Systems. – Minsk, BSUIR, 2019. – P. 305–310.
 12. Prihozhy A.A., Zhdanouski A.M. Genetic algorithm of optimizing the qualification of programmer teams. System
analysis and applied information science. – 2020, No. 4, pages 31-38. https://doi.org/10.21122/2309-4923-2020-4-31-38
 13. Sijin, J. Perspectives on Software, Technology and Business: Programmer Competency Matrix / J. Sijin // [Electronic
resource]. –Mode of access: https://sijinjoseph.com/programmer-competency-matrix/. – Date of access: 28.10.2021.
 14. Karp R.M. (1972) Reducibility among Combinatorial Problems. In: Miller R.E., Thatcher J.W., Bohlinger J.D. (eds)
Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-
4684-2001-2_9
 15. Prihozhy, A.A. Asynchronous scheduling and allocation / A.A. Prihozhy / Proceedings Design, Automation and Test in
Europe. Paris, France. – IEEE, 1998, pp. 963-964.
 16. A. Prihozhy, S. Casale-Brunet, E. Bezati and M. Mattavelli. “Efficient Dynamic Optimization Heuristics for Dataflow
Pipelines,” IEEE International Workshop on Signal Processing Systems, IEEE, pp. 337- 342, October 2018.
 17. Prihozhy, A., Casale-Brunet, S., Bezati, E., M. Mattavelli. Pipeline Synthesis and Optimization from Branched Feedback
Dataflow Programs. Journal of Signal Processing Systems, Springer Nature, 2020, Vol. 92, pages 1091–1099 https://doi.org/10.1007/
s11265-020-01568-5.

ЛИТЕРАТУРА
 1. Joshi, S. Agile Development - Working with Agile in a Distributed Team Environment / S. Joshi // MSDN Maga-zine, 2012,
Vol.27, No.1, pp.1-6.
 2. Collier, K.W., Agile Analytics: A Value-Driven Approach to Business Intelligence and Data Warehousing. – Pearson
Education, 2012. – 74 p.
 3. Muller, J.P., Rao, A.S., Singh, M.P. A Teams: An Agent Architecture for Optimization and Decision-Support, Pro-ceedings
5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998, pp. 261-276.
 4. Masood Z., Hoda R., Blincoe K. (2017) Exploring Workflow Mechanisms and Task Allocation Strategies in Agile Software
Teams. In: Baumeister H., Lichter H., Riebisch M. (eds) Agile Processes in Software Engineering and Ex-treme Programming. XP 2017.
Lecture Notes in Business Information Processing, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-319-57633-6_19
 5. R. Britto, P. S. Neto, R. Rabelo, W. Ayala and T. Soares, «A hybrid approach to solve the agile team allocation problem,»
2012 IEEE Congress on Evolutionary Computation, 2012, pp. 1-8, doi: 10.1109/CEC.2012.6252999.
 6. Wrike [Электронный ресурс] – Режим доступа: https://www.wrike.com/, – Загл. с экрана – Яз. англ. Дата доступа –
28.10.2021.
 7. Flow [Электронный ресурс] – Режим доступа: https://www.getflow.com/, – Загл. с экрана – Яз. англ. Дата досту-па –
28.10.2021
 8. Gutirrez, J. H., Astudillo, C. A., Ballesteros-P?rez, P., Mora-Meli?, D. and Candia-V?jar, A. (2016) The multiple
team formation problem using sociometry. Computers and Operations Research, 75. pp. 150-162. ISSN 0305-0548 doi: https://doi.
org/10.1016/j.cor.2016.05.012
 9. Barricelli, N.A. Symbio genetic evolution processes realized by artificial methods / N.A. Barricelli // Methodos, 1957, pp.
143–182.
 10. Прихожий А.А., Ждановский А.М. Метод оценки квалификации и оптимизация состава профессиональных
групп программистов. «Системный анализ и прикладная информатика». – 2018, № 2, с. 4-11. https://doi.org/10.21122/2309-4923-
2018-2-4-11
 11. Prihozhy, A. Genetic algorithm of optimizing the size, staff and number of professional teams of programmers / A.
Prihozhy, A. Zhdanouski // Open Semantic Technologies for Intelligent Systems. – Minsk, BSUIR, 2019. – P. 305–310.
 12. Prihozhy A.A., Zhdanouski A.M. Genetic algorithm of optimizing the qualification of programmer teams. System
analysis and applied information science. – 2020, No. 4, pages 31-38. https://doi.org/10.21122/2309-4923-2020-4-31-38
 13. Sijin, J. Perspectives on Software, Technology and Business: Programmer Competency Matrix / J. Sijin // [Electronic
resource]. –Mode of access: https://sijinjoseph.com/programmer-competency-matrix/. – Date of access: 28.10.2021.
 14. Karp R.M. (1972) Reducibility among Combinatorial Problems. In: Miller R.E., Thatcher J.W., Bohlinger J.D. (eds)
Complexity of Computer Computations. The IBM Research Symposia Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-
4684-2001-2_9.
 15. Prihozhy, A.A. Asynchronous scheduling and allocation / A.A. Prihozhy / Proceedings Design, Automation and Test in
Europe. Paris, France. – IEEE, 1998, pp. 963-964.
 16. A. Prihozhy, S. Casale-Brunet, E. Bezati and M. Mattavelli. “Efficient Dynamic Optimization Heuristics for Dataflow
Pipelines,” IEEE International Workshop on Signal Processing Systems, IEEE, pp. 337- 342, October 2018.
 17. Prihozhy, A., Casale-Brunet, S., Bezati, E., M. Mattavelli. Pipeline Synthesis and Optimization from Branched Feedback
Dataflow Programs. Journal of Signal Processing Systems, Springer Nature, 2020, Vol. 92, pages 1091–1099 https://doi.org/10.1007/
s11265-020-01568-5.

46 ОБРАБОТКА ИНФОРМАЦИИ И ПРИНЯТИЕ РЕШЕНИЙ

CИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 1, 2022

Прихожий A.А.
ТОЧНЫЙ И ЖАДНЫЙ АЛГОРИТМЫ РАСПРЕДЕЛЕНИЯ ЭКСПЕРТОВ НА

МАКСИМАЛЬНОМ МНОЖЕСТВЕ ГРУПП ПРОГРАММИСТОВ
Белорусский национальный технический университет

 Распределение экспертов по программистским группам, отвечающее требованиям профессио-нальной компетенции в сфере
программирования, специфицированным в ИТ-проекте, является сложной комбина-торной проблемой. В данной работе решается
задача формирования максимального числа групп с включением в них экспертов, обеспечивающих выполнение каждой группой
требований к компетенциям. В статье разрабаты-ваются и сравниваются два алгоритма решения задачи: эвристический жадный и
точный оптимальный. Жадный алгоритм итеративно решает задачу о покрытии на матрице экспертных компетенций до тех пор,
пока не смо-жет создать работоспособную группу из оставшихся экспертов. В статье доказано, что этот алгоритм не оп-тимален,
даже если задача о покрытии решается оптимально. Алгоритм назначения экспертов является дважды жадным, если он использует
жадный алгоритм покрытия множества. Предлагаемый точный алгоритм находит оптимальное решение на трех шагах: создание
набора всех не избыточных групп, построение графа независимости групп и поиск максимальной клики графа. Алгоритм генерации групп
обходит дерево поиска, построенное так, чтобы гарантировать нахождение всех не избыточных групп и поглощение всех избыточных
групп. Ребра графа независимости групп соединяют вершины-группы, не имеющие общих экспертов. В статье предложен алгоритм
поиска максимальной клики, учитывающий особенности графа и решаемой задачи. Экспериментальные результа-ты показывают, что
точный алгоритм является оптимальным эталонным, а алгоритм двойной жадности явля-ется быстрым и может давать решение

Anatoly Prihozhy, received his Diploma of Electrical Engineering from the State Polytechnic, Minsk,
Belarus in 1975, his PhD degree in computer-aided design from the National Academy of Sciences
Minsk, Belarus in 1984, and his Doctor Habilitation degree in computer science from Ukraine, Kyiv and
Belarus, Minsk in 1999. He was Visiting Professor at the Swiss Federal Institute of Technology, Lausanne,
Switzerland in 2001, 2004, 2010 and 2013, 2015 and 2016 and at the Freiburg University, Germany in 2000.
He is currently full professor at Computer and System Software Department of the Belarusian National
Technical University. He has several books and more than 300 publications in Eastern and Western Europe,
USA and Canada His research interests include programming, hardware and system description languages,
compilers and tools, system-, high- and logic-level computer aided design and optimization of parallel and
incompletely specified digital systems.

