40 SALLNTA UHOOPMALINI

UDC 004.272.2 (075.8)

PRIHOZHY A. A.

OPTIMIZATION OF DATA ALLOCATION
IN HIERARCHICAL MEMORY FOR BLOCKED
SHORTEST PATHS ALGORITHMS

Belarusian National Technical University

This paper is devoted to the reduction of data transfer between the main memory and direct mapped cache for blocked
shortest paths algorithms (BSPA), which represent data by a D[M*M] matrix of blocks. For large graphs, the cache size S =
0xM2, 6 < 1 is smaller than the matrix size. The cache assigns a group of main memory blocks to a single cache block. BSPA
performs multiple recalculations of a block over one or two other blocks and may access up to three blocks simultaneously.
If the blocks are assigned to the same cache block, conflicts occur among the blocks, which imply active transfer of data
between memory levels. The distribution of blocks on groups and the block conflict count strongly depends on the allocation
and ordering of the matrix blocks in main memory. To solve the problem of optimal block allocation, the paper introduces
a block conflict weighted graph and recognizes two cases of block mapping: non-conflict and minimum-conflict. In first case,
it formulates an equitable color-class-size constrained coloring problem on the conflict graph and solves it by developing
deterministic and random algorithms. In second case, the paper formulates a problem of weighted defective color-count
constrained coloring of the conflict graph and solves it by developing a random algorithm. Experimental results show that
the equitable random algorithm provides an upper bound of the cache size that is very close to the lower bound estimated
over the size of a complete subgraph, and show that a non-conflict matrix allocation is possible at 6 = 0.5 for M = 4 and at
0 = 0.1 for M = 20. For a low cache size, the weighted defective algorithm gives the number of remaining conflicts that is up
to 8.8 times less than the original BSPA gives. The proposed model and algorithms are applicable to set-associative cache

as well.

Keywords: shortest paths algorithm, hierarchical memory, direct mapped cache, performance, block conflict graph, data

allocation, equitable coloring, defective coloring.

Introduction

The shortest paths search problem in weight-
ed graphs is formulated in different settings [1-4].
The all-pair shortest paths problem (APSP) has
many application domains: from the city traffic
optimization to computer games. Although the
APSP algorithms (including the Floyd-Warshall
one) have polynomial computational complexity
and have been studied for a long time, their reali-
zation on modern multi-processor computing sys-
tems is still an attractive research area since actual
graphs can reach very large sizes.

The parallel APSP algorithm execution time
mostly depends on how it distributes the work
among the processor cores and what is the through-
put and load of each core. The hierarchical memory
is also a key contributor in the execution time [5, 6].
Caches are intermediate level between the CPU and
main memory, which accelerate the data access. If
a program accesses data and the data is not in cache,
a miss has occurred. The key step in improving the
cache performance is reducing the miss rate [7-9].

The hierarchical memory employs three strat-
egies of mapping main memory blocks to cache
blocks: direct mapping, set-associative mapping
and full-associative mapping. Usually the cache
stores a small number of blocks against the main
memory. That is why the main memory blocks are
grouped when mapping to a cache block. When
executing an algorithm, blocks of the same group
compete for the cache block. Conflicts may occur
among the blocks simultaneously requested. Op-
timizing the distribution of the set of blocks on
the set of groups may greatly reduce the conflict
count and the data miss rate.

The temporal and spatial localities [11] asso-
ciated with data accesses the executed algorithm
generates allow a reduction of data misses in the
cache. The locality can also help in the efficient
allocation of data in the main memory. The pa-
per considers a complement for the locality ap-
proach, which allocates data [12—14] of a blocked
algorithm in such a way that maps the conflict-
ing blocks of the slow main memory to different

INFORMATION SECURITY

41

block locations of the fast cache. The placement
order of the main memory blocks determines
a group associated with each cache block.

The paper formulates the data allocation
problem for blocked shortest paths algorithms,
proposes a block conflict weighted graph model,
and develops efficient extensions of equitable and
defective coloring algorithms targeting the mini-
mization of cache size, decreasing the number of
remaining conflicts among blocks, and reduction
of the algorithm execution time.

Blocked all pairs shortest paths algorithms

Let G = (V, E) be a directed weighted graph,
where V={0,..., N-1} and £ < {(i,)) | i,j € V}
are the vertex and edge sets respectively. A weight
function assigns a weight wy; to an edge (i, j) €
E. Matrix W represents the function, in which
WG, j) = 0if i = j, W(i, j) = wy if (i,) € E, and
W(i,j)=wif (i,)) ¢ E.

The all-pair shortest paths problem is for-
mulated as to find the paths of the shortest
length between all pairs of vertices, i,j € V. The
Floyd—Warshall (FW) algorithm [1, 2] uses
a matrix D that describes the all-pair shortest
path lengths. The algorithm computational com-
plexity is O(N?). For large matrices, the execu-
tion time of FW is high, and a significant part
of the time is due to the hierarchical memory
operation.

Let the matrix D[NxN] be blocked resulting in
a MxM matrix of smaller matrices Bij, 0<i,j<
B, where B = N/ M. Algorithm 1 known as the
blocked Floyd—Warshall (BFW) [3], iteratively
calls a function BCA (B!, B%, B?) realized by Al-
gorithm 2 of calculating block B' over blocks B>
and B3. Figure 1 illustrates the behavior of BFW
on matrix D[4x4]. In an Iteration, BFW calcu-
lates the diagonal DO block, blocks C1 and C2 of
cross, and peripheral blocks P3, and moves the
cross from the left-top corner to the right-bottom
one. Work [4] extended BFW to the heterogene-
ous four-type-block algorithm HBFW. BSPA de-
notes both BFW and HBFW. The computational
complexity of BSP4 and FW is the same. BSPAs
advantage is the ability to localize data and com-
putations within blocks, which is important for
efficient cache operation, and for the organization
of parallel computation of blocks [7-9]. BSPA
does not worry about allocating data in hierarchi-
cal memory.

Algorithm 1: Blocked Floyd—Warshall (BFIV)

Input: A number N of graph vertices
Input: A matrix W of graph edge weights
Input: A size B of block
Output: A matrix D of lengths of all-pair shortest paths
M« N/B D[MxM)] < W[NxN]
for m <— 0 to M -1 do
BCA (Bm,m’ Bm,m’ Bmm)
fori < 0toA-1do
if i # m then
BCA (Bi,m’ Bi,m’ Bm,m)
BCA (Bm,i’ Bm,mv Bm,i)
fori < 0toA-1do
if i # m then
forj < 0toM-1do
if j # m then
BCA (B, B;

// DO

/I Cl
/1 C2

m> B j) /I P3

return D

Algorithm 2: Block calculation algorithm (BCA)

Input: B — size of block
Input: B! — first input block
Input: B2 — second input block
Input: B3 — third input block
Output: B' — recalculated block
for k<~ 0 to B -1 do
fori < 0 toB-1do
forj < 0toB-1do
sum < B% + B3y
if BY; > sum then BY;; < sum;

return B!

0 1 2 3 0 1 2 3

0 c2|c|cC2

o

P3 | Cl | P3| P3

1| Cl|P3|P3|P3 C2 C2 | C2
2| Cl | P3| P3| P3 2| P3| Cl | P3|P3
3/ Cl1 | P3| P3| P3 3| P3| CL | P3|P3

Fig. 1. lllustration of BFW operation

Formulation of data allocation problem

In blocked algorithms that processes big
data the overall size of blocks is larger than the
available cache size, therefore several blocks are
mapped to the same slots of the direct mapped
cache (Fig.2). Thus, the main memory blocks 0,
4, ... are assigned to the slot group 0 of cache.
A problem arises when the executed program
accesses simultaneously blocks 0 and 4. In this
case, the blocks are in conflict, the cache flaking
takes place, and the program execution slows
down significantly. An appropriate allocation of
blocks in the main memory can solve the prob-
lem. The conflicting blocks have to be assigned
to different cache slots. This leads to reordering
of blocks in the main memory. The exhaustive
analysis of the executed algorithm is a way to

3,2021

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

42

3ALLNTA MUHOOPMALIN

Main Direct
Memory mapped
cache

block slot
0 0 slot group
1 V4 1 slot group
2 A 2 slot group
3 / 3 slot group
4
5
6
7

Fig. 2. Mapping memory blocks to slot groups
of direct mapped cache

the construction of a non-conflict or minimum-
conflict block allocation. The paper proposes
a model of weighted block-conflict graph, which
allows for BSPA to find a block placement with
a minimum number of conflicts.

Weighted block-conflict graph

Figure 3 shows an enumeration and initial
row-major memory layout of 16 blocks of matrix
D[4x4] in the main memory. Fig. 4 depicts a ma-
trix of block conflict ternary relation. In the ma-
trix, every filled cell indicates a tuple (i, j, w) of
the relation where w is a conflict count between
the blocks i and j. For BSPA, w € {1, 2}. For
instance, the cell (0, 5) indicates the absence of
conflicts between blocks 0 and 5 and does not de-
scribes a tuple. The cell (0, 12) describes a tuple

Fig. 3. Initial placement of blocks of matrix D[4x4]
in main memory

(0, 12, 2) that indicates the presence of 2 conflicts
between blocks 0 and 12.

In Fig. 4, two right columns edge and weight
describe for each block the number of other con-
flict blocks and the overall conflict count respec-
tively. For instance, block 0 has six other conflict
blocks with the overall conflict count of 12.

A weighted undirected graph Gy = (7, C),
where 7 is a set of blocks and C'is a set of weight-
ed edges (Fig. 5), is an alternative representation
of the conflict relation. An edge (i, j) € C has
a weight (conflict count) w(i, j). In Figure 5, the
edges represented by solid lines have the weight
of 2, and the dash-line edges have the weight of 1.

Assertion 1. Graph Gr has a complete sub-
graph whose chromatic number is 2xM-1.

A proof of the assertion is based on the consid-
eration of a subgraph constructed of the vertices,
which correspond to the 2xM—1 blocks of a cross. It
shows that all the vertices are adjacent in the graph.

The number 2xM-1 is a lower bound of the
conflict graph chromatic number x(Gy). Thus, the

L= R T = R L A o IR = |

13 14 15 edge weight
6 12
11 18
11 18
11 18
11 18
6 12
11 18
11 18
11 18
11 18
6 12
11 18
11 18
11 18
11 18
6 12

Fig. 4. Block conflict relation for D[4x4]

INFORMATION SECURITY

43

0
135 !
o
I
14 1A HH .
- o
N TR~ iy N
A me LT 4 \
. e S
by o -7 /Jl) S v
13 A I Ak G R R S A NN RS 3
= - RN _ I A
- T -
: IR W 1 P
5 N e | tH L
| T > Tl) DAY
- N e
g NP VA i
12) = [¥ 1% :
R ~n L
\ [4 g
VN LT < 4 \ A
[S - N ! \ & .
\ 7 ~ ! o
‘\l ~0) NP ’“ : /’le
- . \ 1 N -
=~ | \ N AN TN T | -
SRS Y A Sy
-<a X
\ T7 -k~ L \
fr\\ = N\ -
\ 7 - - N\ - -
10 \ P | ¢
p Y i -
) T KRN
7 i %
[— Sl e
8

Fig. 5. Block conflict graph G for D[4x4]:
edges of weight 2 are solid and edges of weight 1 are dash

graph for matrix D[4x4] has a chromatic number
lower bound of 7.

Non-conflict allocation of matrix blocks

In work [15], the authors proposed a graph
coloring technique for minimizing the storage
consumed by an algorithm. The technique models
and evaluates the lifetime of each variable and as-
signs two variables to the same memory location
if their lifetimes are not intersected.

A proper coloring of the graph Gy is a map-
ping u: 7' — R, of a set T of vertices to a set R,
of colors so that for two adjacent vertices 4, ; €
T the inequality p(s) # w(Z) holds. A color class
T,(r) < T is a set of vertices labeled by a single
color reR,. In a properly colored graph, each
color class is an independent vertex set. Let the
color classes 7,,(1) U...u T, (x) = T represent the
coloring p where y = |R,|. Let Q be a set of all
proper colorings of graph Gt. Then the chromatic
number of Gt is

(1

The chromatic number y(Gy) determines the
size of direct mapped cache that is sufficient for
non-conflict allocation of matrix D[MxM]. Let
0o(Gy) be a maximum color class size in the p col-
oring. Then (2) determines the number p(Gt) of
blocks needed for proper allocation of the matrix
in the main memory.

p(Gr) =x(Gr) > o(Gr)

1(Gr) = r}{leig\Rp\

2

The inequality p(Gy) > M? must hold, and
n = p(Gy)—M? is the number of garbage blocks
that are added to matrix D.

Fig. 6 shows a result of applying the coloring
technique to the block conflict graph Gt depict-
ed in Fig. 5. The graph chromatic number y(Gr)
equals 7. The maximum color class size o(Gry)
equals 4. The number of blocks equals 16. As
many as 28 main memory blocks are needed for
the non-conflict allocation of D[4x4]. Fig. 6a de-
picts the mapping of 16 block-vertices to 7 colors.
Fig. 60 depicts the assignment of blocks to the
cache slot groups and the placement of the blocks
in main memory. A filled cell represents a garbage
block denoted by ‘x’. Since the color classes have
different size, the placement 0, 1, 2, 3, 4, 8, 9, 5,
11, 7,6, 14, 13, 12, 10, x, X, X, X, X, X, 15, X, X,
X, X, X, X provides a big fragmentation of main
memory.

Optimization of non-conflict block allocation

The section targets two goals: first to mini-
mize the size of cache that supports a non-con-
flict block allocation, and second to reduce the
main memory fragmentation. Fig. 65 shows that
the known coloring algorithm has introduced
too many garbage blocks. This is because the
algorithm minimizes the number of colors by
generating a color class of possibly maximal
size for each color, which leads to high value
of o(Gy) and to misbalancing of cache slot load.
As a result, the cache size and main memory
fragmentation are large. The algorithm is not ca-
pable of generating a satisfactory block matrix
placement.

Work [16] introduces equitable coloring,
which aims at balancing the size of color class-
es. It assign colors to vertices in such a way that
no two adjacent vertices have the same color, and

Slot group Blocks

a b

Fig. 6. Coloring technique application:
a) colors of blocks in matrix D[4x4];
b) assignment of blocks to slot groups of cache

3,2021

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

44

SALLNTA UHOOPMALINI

the numbers of vertices in any two color class-
es differ by at most one. The Hajnal-Szemerédi
theorem [17] proves that any graph with max-
imum degree A has an equitable coloring with
A + 1 colors. The theorem applied to the graph
with A = 11 (Fig. 5) gives the color count of 12,
which is much larger than the graph chromatic
number of 7 (Fig. 6). It means the theorem pro-
vides a too pessimistic solution that is not practi-
cally acceptable.

We introduce a color-class-size constraint
CSC and formulate a new csc-coloring problem
on graph Gy to find a constrained chromatic num-
ber y(Gy):

minimize y(G;)=min ‘Ru‘ 3)
neQ
subject to
I7,(|<CSC, peQand rer, (4)

The CSC constraint describes a requirement
for the number of blocks assigned to the same slot
group in cache. The formulation aims at both ob-
taining a low fragmentation of main memory and
minimizing the cache size.

Color-class-size
constrained coloring algorithms

Since the graph chromatic number problem is
NP-hard, we propose two heuristic color-class-
size constrained coloring algorithms: Algorithm 3
is a constrained deterministic graph coloring
(CDGC), and Algorithm 4 is a constrained ran-
dom graph coloring (CRGC).

CDGC traversals all vertices and chooses an
earlier introduced proper color if any; otherwise,
it adds a new color and assigns it to the current
vertex. The color is proper if it does not label an
adjacent vertex and its vertex class size does not
exceed CSC. CRGC randomly generates many
proper csc-colorings and returns the best of them
as output. While generating the next coloring, it
randomly selects an uncolored vertex and ran-
domly selects an earlier introduced proper color if
any; otherwise, it adds a new color and assigns it
to the current vertex.

We have realized the both algorithms and con-
ducted experiments on various matrix configura-
tions. Fig. 7 reports results the CRGC algorithm
obtained for the D[4x4] matrix. Fig. 7a depicts the
optimal csc-coloring of 16 blocks. Fig. 7 depicts
the optimal placement of the blocks in the main

Algorithm 3: Constrained deterministic graph csc-coloring (CDGC)

Input: A weighted undirected graph G = (7, C) block conflicts
Input: A number M? of blocks in set T

Input: A conflict relation C

Input: A constraint CSC on the color class size

Output: A vector Coloring of vertex colors in graph Gt
Output: A chromatic number y of graph G

Colors < &
for b < 0 to M? do
AvailColor < undefined
for ¢ € Colors do
if UseCnt(c) < CSC then
flag < true
for bc <— 0 to b—1 do
if Coloring(bc) = c and (b, bc) € C then
flag < false
break
if flag then
AvailColor < ¢
break
if AvailColor = undefined then
AvailColor <— NewColor
Colors < Colors U {AvailColor}
UseCnt(AvailColor) < 1
else
UseCnt(AvailColor) < UseCnt(AvailColor) + 1
Coloring(b) < AvailColor
v <|Colors|
return y, Coloring

Algorithm 4: Constrained random graph csc-coloring (CRGC)

Input: A weighted undirected graph Gy = (7, C) of block conflicts
Input: A number M? of blocks in set T

Input: A conflict relation C

Input: A constraint CSC on the color class size

Input: A constraint RunCount on the coloring run count

Output: A vector BestColoring of vertex colors in graph G
Output: A chromatic number y of graph Gy

Y <= ©
for run < 1 to RunCount do

Teolored < & Colors < &
while 7'\ Teolored # & do
Randomly select b € T'\ Teolored

ColAvailable < &
for ¢ € Colors do
if UseCnt(c) < CSC then
flag < true
for bc € Teolored do
if Coloring(bc) = c and (b, bc) € C then
flag < false
break
if flag then
ColAvailable < ColAvailable U {c}
if |ColAvailable| > 0 then
Randomly select ¢ € ColAvailable
Coloring(b) < ¢
UseCnt(c) < UseCnt(c) + 1
else
Colors < Colors U {NewColor}
Coloring(b) <— NewColor
UseCnt(NewColor) < 1
Teolored < Teolored U {b}
if y > |Colors| then
v < |Colors|
BestColoring < Coloring
return y, BestColoring

INFORMATION SECURITY

45

memory and cache. Table 1 provides a compari-
son of CRGC against CDGC on matrix D[12x12]
depending on the CSC constraint.

The comparison concerns three parameters:
the cache size, the overall block count in main
memory, and the garbage blocks count in overall
count. CRGC has reduced the cache size by up to
17.1% against CDGC. It also introduced much
less garbage blocks.

Table 2 reports conflict graph parameters such
as the vertex count, edge count, maximum, min-
imum and average vertex degree, and chromatic
number upper bound depending on M.

Table 3 reports the lower bound that is evaluated
by Assertion 1 and the upper bound that is evaluat-
ed by CRGC with respect to the cache size, mem-
ory size and garbage block count that are sufficient
for non-conflict allocation of matrix D depending
on M and CSC. If M equals 4 and 6, the lower and
upper bounds are the same, it means CRGC has
given a minimum of cache size. If M equals 8, 10
and 12, the upper bound of cache size is 1, 2 and
2 blocks respectively that is larger than the lower
bound, but the load of a cache block is one memory
block lower, and the garbage block count are re-
duced from 11, 14 and 17 to 0, 5 and 6 respectively.
The matrix D allocations given by CRGC are much
better over those given by the lower bound. If M
equals 5, 7, 9 and 11, the upper bound loses 1, 1,
1 and 2 blocks of the cache size respectively, and
has a larger main memory fragmentation against
the lower bound. The overall conclusion is in most
cases CRGC has given optimal results and in other
cases has given high quality solutions that are close
to optimal ones.

Fig. 8 shows a reduction of the cache size
against the main memory size in non-conflict al-
location of matrix D depending on M. It can be
observed that the increase in the number of ma-
trix blocks leads to the relative reduction of the
cache size from 50% at M = 4 down to about
10% at M = 20.

Defective weighted coloring algorithm

Defective coloring may color adjacent verti-
ces by the same color [18]. A (k, d)-coloring of
a graph is a coloring of its vertices with k colors
such that each vertex has at most d neighbors with
the same color. The minimum number of colors &
required for which the graph is (£, d)-colorable is

Slot group| Blocks
0 9 i12i x
0 1 2 3 Dt EE s S
H H H O
0(i1i4i5i3;
1li6i2i3i5]
20i2i0i1i6i
H H 2
3{ioi1id4i2i| fe Do 2L
- 6 4011 x
a b

Fig. 7. Constrained csc-coloring algorithm:
a) block-vertex colors in graph GT;
b) assignment of memory blocks to slot groups
in cache and placement of blocks in main memory

Table 1. Comparison of deterministic and random
coloring algorithms regarding the cache size and the
overall and garbage block count in main memory

for D[12x12]
(oo
Algorithm Parameter
2 3 4 5 6
Cache blocks 75 | 53 | 42 | 35 | 28
CDGC |Memory blocks 150 | 159 | 168 | 175 | 168
Garbage blocks 6 | 15 | 24 | 31 | 24
Cache blocks 72 | 48 | 36 | 29 | 25
CRGC [Memory blocks 144 | 144 | 144 | 145 | 150
Garbage blocks 0 0 0 1 6
Ran/Det |Cache gain (%) 40 | 94 |143|17.1]10.7

Table 2. Conflict graph G parameters vs. M

M 6 7 8 9 10 11 12
Vertices 36 | 49 | 64 | 81 | 100 | 121 | 144
Edges 315 | 525 | 812 | 1188 |1665|2255]5940
Edges (%) 50.0 [44.6 | 40.3 | 36.7 | 33.6 | 31.1 | 28.9

Vertex degreemax | 19 | 23 | 27 | 31 | 35 | 39 | 43
Vertex degreemin | 10 | 12 | 14 | 16 | 18 | 20 | 22
Vertex degree aver | 17.5|21.4 [25.4129.3]33.3|37.3|41.3
Chromatic number | 11 | 14 | 16 | 18 | 20 | 23 | 25

Table 3. Lower and upper bounds of cache size vy,
main memory size p and garbage block count n sufficient
for non-conflict allocation of matrix D vs. M and CSC

Lower bound Upper bound
v CsC p n CSC v p n
4 3 7 21 5 3 7 21 5
5 3 9 27 2 3 10 | 30 5
6 4 11 44 8 4 11 44 8
7 4 13 52 3 4 14 | 56 7
8 5 15 75 11 4 16 | 64 0
9 5 17 85 4 5 18 90 9
10 6 19 | 114 | 14 5 21 105 5
11 6 21 | 126 5 6 23 | 138 | 17
12 7 23 | 161 | 17 6 25 | 150 | 6

3,2021

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

46

SALLNTA UHOOPMALINI

50.0
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0

5.0

0.0 ° ° o

—a— Cache size (%)

---#--- Garbage blocks (%)

Fig. 8. Cache size (%) over matrix D size, and garbage block count (%) over D block count in non-conflict allocation vs. M

called the d-defective chromatic number. The im-
propriety of a vertex is the number of neighbors
that have the same color. The impropriety of the
coloring is the maximum of the improprieties of
all vertices of the graph.

In the paper, we have extended the concept of
defective coloring to the concept of weighted de-
fective coloring p of graph Gy. In the coloring, at
least one color class 7,(r) c T, reR,, is a depend-
ent vertex set. Since the class contains at least one
weighted edge, we define a weighted defect with
Equation (5).

oI, (=Y wi,)) ()
i,jeT, (r)
A weighted defect of the coloring p is
()

P(n) =max o(7, ()

We formulate the defective weighted con-
strained coloring problem as follows:

minimize o(Gy)= r:lelg D) (6)
subject to
|R,|<cCCCpeQ, (7)
I7,(n|<CSC, peQ and rery, (8)
CCCxCSC>M?, 9)

where CCC is a color-count-constraint. In case of
CCC x CSC = M? a solution of problem (6) — (9)
gives a block-matrix allocation without garbage
blocks in the main memory and with a minimum
of conflicts among blocks assigned to the same
cache block. A permutation of D matrix blocks
represents the allocation.

Fig. 9 depicts a solution for D[4x4], CCC =4
and CSC = 4. The obtained weighted defect ®(Gr)
is 3 conflicts. In the figure, each column repre-
sents a color class corresponding to a single cache
block. The allocation of blocks in main memory
is:0,2,1,3,6,4,7,5,11,9, 10, 8, 13, 15, 12, 14.

We have developed Algorithm 5 of defective
weighted constrained random coloring (DW-
CRGC) of the conflict graph. The algorithm itera-
tively generates

o 1 2 3

0 0 1:¢3

2
1 6 :4:7:5
9

2 11 10: 8

3 13:15:12

Fig. 9. Defective weighted constrained coloring of D[4x4]

RunCount vertex random permutations (order)
and selects a coloring that has a minimum ® of
weighted defect. Each iteration produces a graph
vertex coloring that meets the given constraints.
After selecting a vertex u € 7'\ L where L < T is
a subset of already colored vertices, the algorithm
chooses a color ¢ using seven parameters:

e an overall weighted defect D(c) on L;

e a weighted additional defect d(c) after in-

cluding u in ¢;

e a maximum defect D,,,, = max D(c) over

all ¢;

e amaximum defect d,,,, = max d(c) over all ¢;
e a weight function W(c) on L, whose maxi-

mum value indicate a selected color of ver-

tex u;

INFORMATION SECURITY

47

e a maximum value W,,,, = max W(c) of the

weight function over all ¢;
e acolor class BestC with W_,,,.

For each run of coloring and each color
class ¢, Algorithm 5 first initializes three varia-
bles: a number vCnt(c) of vertices in ¢, an overall
defect D(c) and an additional defect d(c). Then in
a loop, it traverses all vertices. For each vertex
block, it traverses all color classes as candidates
for color assignment. For each class ¢ whose car-
dinality is less than CSC, the algorithm calculates
the additional defect d(c) using the weights of
conflict graph edges. It also calculates d,,,,. Then
the algorithm calculates the weight function W(c)
of each ¢ using (10), and selects a class BestC
with the maximum value of W,

W(C) =ax (Dmax _D(C)) / Dmax +

+Bx(dy —d(c))/ d -

W(c) depends on two parameters: weighted de-
fect D(c) of ¢ over all colored vertices and addi-
tional defect d(c) due to coloring vertex u. In (10),
we assume the first term be zero if D, = 0, and
the second term be zero if d,,,, = 0. Algorithm 5
adds vertex block to class BestC and recalculates
D(BestC) and D,,,,. After coloring all vertices,
the algorithm updates BestColoring and its de-
fect o if the obtained Coloring is better than the
BestColoring.

We have implemented Algorithm 5 in C/C++
and have performed several experiments. Ta-
ble 4 reports results for D[6x6] with respect
to the weighted defect of the CSC constraint
and factors a and B. When o = 1 the algorithm
yields a maximum defect. It gives a lower de-
fect when a is closer to zero (in our experiment
at o = 0.3). We can explain it as balancing the
load among cache blocks (D(c) and D, are
responsible for the balancing) is less important
than avoiding conflicts when mapping the main
memory blocks to cache blocks (d(c) and d,,y
are responsible for the avoiding). CSC has taken
values 3, 4, 6, 9 and 12, which guaranty the ab-
sence of garbage blocks at the D size of 36. The
weighted defect has reduced as 42, 22, 6, 2 and
0 respectively with increasing CSC. At CSC =
12 the algorithm has generated a non-conflict
block allocation.

Table 5 compares the matrix row-major mem-
ory defective allocation of BSPA (Fig. 3) against
the optimized cache allocation (Fig. 9) produced

(10)

Algorithm 5: Defective weighted constrained random conflict graph
coloring (DWCRGC)

Input: A weighted undirected graph G = (7, C) of block conflicts
Input: A number M? of blocks in set T

Input: A conflict relation C

Input: A factor o in the objective function

Input: A constraint CSC on the color class size

Input: A constraint CCC on the color count

Input: A constraint RunCount on the coloring run count

Output: A vector BestColoring of vertex colors in graph G

Output: A minimal weighted defect o of best graph coloring

0o Bel-a
for run <— 1 to RunCount do
Order < RandomBlockOrdering(M?)
forc < 0to CCC—1do
vCnt(c) <0 D)« 0 d(c)«<0
Do <0
for i < 0 to M>— 1 do
block < Order(i) d. < -1
forc < 0to CCC—1do
d(c) <0
if vCnt(c) < CSC then
forj<0toi—1do
b < Order(j) d < w(b, block)
if d > 0 and Coloring(b) = c then
d(c) «d(c)+d
dmax <« Max(dmax’ d(c))
Wax < =1 BestC < —1
forc < 0to CCC—1do
W)« 0 W1« W2« -1
if vCnt(c) < CSC then
if D, # 0 then
W1« o x (Dmafo(c)) /Dmax
if d, # 0 then
W2« B X (dmax - d((/)) / dmax
if W1 #-1 or W2 #—1 then
if W1 #—1 then W(c) « W1
if W2 #—1 then W(c) « W(c)+ W2
if W. < W(c) then
Wnax < W(c) BestC < c¢
else
if BestC = —1 then BestC = ¢
Coloring(block) < BestC
D(BestC) < D(BestC) + d(BestC)
Dpax < Max(D,,,y, D(BestC))
d(BestC) <~ 0 vCnt(BestC) < vCnt(BestC) + 1
if > D, then
® < D, BestColoring <— Coloring
return o, BestColoring

Table 4. Maximum-minimum weighted defect of
a single color class in defective coloring
for M=6 vs. a, p and CSC

CSC
a p
3 4 6 9 12
0.0 1.0 |43-56|22-31| 6-14 | 2-7 0-6
0.3 0.7 |42-57|22-30| 6-14 | 2-8 0-6
1.0 0.0 |47-74|25-50 | 11-27 | 5-12 | 2-6

by the defective weighted coloring algorithm
DWCRGC for matrix D[MxM] at M =4, ..., 12,
CSC = CCC = M. In both cases, the allocation is
defective since the conflict graph chromatic num-
ber is larger than M.

3,2021

SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

48

SALLNTA UHOOPMALINI

With the increase of M from 6 to 12 the min-
imized weighted defect @ per cache block given
by DWCRGC has grown from 6 to 15 conflicts.
The results given by the row-major allocation of
BSPA are much worse: from 30 to 132 conflicts
respectively. The gain of DWCRGC has increased
from 5.0 to 8.8 times.

Table 5. The number of conflicts given by DWCRGC
against BSPA (row-major block matrix layout) vs. M

M 6 | 7| 8 | 9| 10|11]| 12
DWCRGC, conflict | 6 | 8 | 9 | 11 |12 |14] 15

BSPA, conflict 30 | 42 | 56 | 72 | 90 | 110|132
Gain, times 50[53[62]66|75]|79]8.38

Conclusion

The paper has formulated the problem of op-
timizing the data allocation in main and cache
memory to reduce the data miss count during
execution of blocked all-pair shortest paths algo-
rithms. We have introduced the model of block

conflict weighted graph for solving the problem.
The known coloring techniques does not solve
the problem efficiently since they generate color
classes of different size and give big fragmenta-
tion of the main memory. The paper has intro-
duced two types of block allocation: non-conflict
and weighted defective. We have pro-posed the
color-class-size constrained coloring algorithms
for the non-conflict allocation. Experimental re-
sults have shown the gain our random coloring
algorithm provides against the deterministic one.
To minimize the conflict count at the restricted
cache size, we have extended the known concept
of defective coloring to the concept of weighted
defective coloring of the block conflict graph. Our
random weighted constrained defective coloring
algorithm minimizes the number of conflicts and
balances the load on the cache slots for the given
cache size. The model and algorithms target first
the direct mapped cache although they are also
applicable being modified to the set associative
cache.

REFERENCES

1. R.W. Floyd “Algorithm 97: Shortest path”, Communications of the ACM, 1962, 5(6), p.345.
2. Hofner, P. Dijkstra, Floyd and Warshall Meet Kleene / P. Hofner and B. Moller // Formal Aspect of Computing, Vol. 24,

No. 4, 2012, Ne 2, pp. 459-476.

3. G. Venkataraman, S. Sahni, S. Mukhopadhyaya “A Blocked All-Pairs Shortest Paths Algorithm”, Journal of Experi-

mental Algorithmics (JEA), Vol. 8, 2003, pp. 857-874

4. Prihozhy A.A., Karasik O.N. “Heterogeneous blocked all-pairs shortest paths algorithm”. «System analysis and applied
information science». 2017; (3): 68—75. (In Russ.) https://doi.org/10.21122/2309-4923-2017-3-68-75.

5. C.Kozyrakis. “Computer Systems Architecture. Advanced Caching Techniques”, Stanford University, pp. 1-35, 2012.

6. Smith, A.J., “Cache Memories”, Computing Surveys. 1982, 14 (3): 473-530.

7. J.S.Park, M. Penner, and V.K. Prasanna.

“Optimizing graph algorithms for improved cache performance” /

J.S. Park, // IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp. 769-782.

8. Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms.
«System analysis and applied information science». 2019; (4):10-18.

9. Solomonik, E. Minimizing Communication in All Pairs Shortest Paths / E. Solomonik, A. Buluc, and J. Demmel // IEEE
27" International Symposium on Parallel & Distributed Processing, 2013, pp. 548-559.

10. Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers / P. Tang //

IEEE SOUTHEASTCON 2014, pp. 1-7.

11. Prihozhy, A.A. Adaptive memory management. Automation and computer technology, 1988, Ne 3, c. 58-65.
12. Prihozhy, A.A. Asynchronous scheduling and allocation / A.A. Prihozhy / Proceedings Design, Automation and Test in

Europe. Paris, France.— IEEE, 1998, pp. 963-964.

13. Prihozhy A.A., Karasik O.N. Investigation of methods for implementing multithreaded applications on multicore sys-

tems. Informatization of education, 2014, Ne 1, ¢. 43-62.

14. Prihozhy A.A., Karasik O.N. Cooperative model for optimization of execution of threads on multi-core system. «Sys-
tem analysis and applied information science». 2014;(4):13-20. (In Russ.)
15. Chaitin, G. J. “Register allocation & spilling via graph colouring”, Proc. 1982 SIGPLAN Symposium on Computer

Construction, 1982, pp. 98-105.

16. Bodlaender, H.L., Fomin, F.V. “Equitable colorings of bounded treewidth graphs”, Theoretical Computer Science,

17.

18.

2005, 349 (1): 22-30.

Hajnal, A., Szemeredi E. “Proof of a conjecture of P. Erdés”, Combinatorial theory and its applications, II (Proc. Col-
loq., Balatonfiired, 1969), North-Holland, 1970, pp. 601-623

Cowen, L.J., Cowen, R. H., Woodall, D. R. “Defective colorings of graphs in surfaces: Partitions into subgraphs of
bounded valency”. Journal of Graph Theory, 2006, 10 (2): 187-195.

INFORMATION SECURITY 49

JIMTEPATYPA

1. R.W.Floyd “Algorithm 97: Shortest path”, Communications of the ACM, 1962, 5(6), p. 345.

2. Hofner, P. Dijkstra, Floyd and Warshall Meet Kleene / P. Hofner and B. Moller // Formal Aspect of Computing, Vol. 24,
No. 4, 2012, Ne 2, pp. 459-476.

3. G. Venkataraman, S. Sahni, S. Mukhopadhyaya “A Blocked All-Pairs Shortest Paths Algorithm”, Journal of Experi-
mental Algorithmics (JEA), Vol 8, 2003, pp. 857-874

4. TIlpuxoxmii, A. A. PazHOPOAHBIIT OIOYHBIN AITOPUTM ITOMCKA KpAaTYaHIINX ITyTeil My BCEMHU IapaMu BepIInH rpada /
A. A. ITpuxoxuii, O. H. Kapacuk // CuctemHblit aHanu3 u npukiaanas napopmatuka.— Ne 3.—2017.—C. 68-75.

5. C.Kozyrakis “Computer Systems Architecture. Advanced Caching Techniques”, Stanford University, pp. 1-35, 2012.

6. Smith, A.J. “Cache Memories”, Computing Surveys. 1982, 14 (3): 473-530.

7. J.S. Park, M. Penner, and V. K. Prasanna “Optimizing graph algorithms for improved cache performance/J.S. Park, //
IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp.769—782.

8. Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths algorithms.
«System analysis and applied information science». 2019; (4):10-18.

9. Solomonik, E. Minimizing Communication in All Pairs Shortest Paths / E. Solomonik, A. Buluc, and J. Demmel // IEEE
27" International Symposium on Parallel & Distributed Processing, 2013, pp. 548—559.

10. Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers / P. Tang //
IEEE SOUTHEASTCON 2014, pp. 1-7.

11. Ipwuxoxwmii, A.A. AnantuBHoe ynpasieHue namsrtbio / A. A. [Ipuxoxuii / ABTOMaTHka U BBIYMCINTEIbHAS TEXHHKA,
1988, Ne 3, c. 58-65

12. Prihozhy, A.A. Asynchronous scheduling and allocation / A.A. Prihozhy / Proceedings Design, Automation and Test in
Europe. Paris, France.— IEEE, 1998, pp. 963—-964.

13. Tpuxoxuii, A.A. VccienoBaHue METONOB peaH3aliid MHOTOMOTOUHBIX MPUIOKCHUN Ha MHOTOSJICPHBIX CHCTEMaX /
A. A. Ipuxoxwuii, O. H. Kapacuk // Uadopmaruszanus oopasosanus, 2014, Ne 1, c. 43-62.

14. Tpuxoxuii, A.A. KoomeparuBHas MOJe/Ib ONTUMH3AINN BBIMOJHCHUS IOTOKOB Ha MHOTOSJICPHOW cHUCTeMe /
A.A. Tlpuxoxwuii, O. H. Kapacuk // CuctemHBIH aHaIM3 U npukiagHas nHpopmaruka, 2014, Ne 4, c. 13-20.

15. Chaitin, G. J. “Register allocation & spilling via graph colouring”, Proc. 1982 SIGPLAN Symposium on Computer
Construction, 1982, pp. 98-105.

16. Bodlaender, H.L., Fomin, F.V. “Equitable colorings of bounded treewidth graphs”, Theoretical Computer Science, 2005,
349 (1): 22-30.

17. Hajnal, A., Szemeredi E. “Proof of a conjecture of P. Erd6s”, Combinatorial theory and its applications, II (Proc. Col-
loq., Balatonfiired, 1969), North-Holland, 1970, pp. 601-623

18. Cowen, L.J., Cowen, R.H., Woodall, D.R. “Defective colorings of graphs in surfaces: Partitions into subgraphs of
bounded valency”. Journal of Graph Theory, 2006, 10 (2): 187-195.

Tlocmynuna Iocne dopabomxu Ipunsama x nevamu
11.08.2021 01.09.2021 01.09.2021

TIPUXOXHU A. A.

ONTUMU3ALUA PASMELLEHUA AAHHbIX
B UEPAPXUYECKOU NAMSATU ANA BAOYHbIX AATOPUTMOB
MOUCKA KPATYAULLUUX NYTEU

Cmamus nocesujeHa coKpaweruio 0OMeHa OAHHbIMU MeHCOY OCHOBHOU NAMAMbBIO U KIUL NPAMO20 CONOCMABIEHUS NPU
8bINOHEHUYU OJIOYHBIX ANOPUMMO8 NOUCKA KPAmuauuux nymetl, npeocmasnaiouux oanuvie mampuyei 610xk08 DM XM].
Jna bonvwux 2pagos pasmep ksw S = SxM?, § < 1 menvue pasmepa mampuyot. Kow nasnavaem 2pynny 610K08 0CHOBHOL
namamu Ha 0OuH OIOK KIul. Ancopummsl nepecuumsi8aiom OJI0K Mampuywvl yepe3 0OuH uiu 08a Opyaux O1oKa u mMocym
obpawamuvca cpazy Kk mpem oaroxkam. Eciu amu 610Kku HasHayeHvl Ha 00UH OJI0K KIUL, MeHCOY HUMU BO3HUKAEM KOHDIUKM,
npueoOAWUL K AKMUBHOMY OOMEH) OAHHBIMU MeXHCOy YposHAMU namamu. Pacnpedenenue 610K06 no epynnam u yucio
KOHGPIUKMOB CUTILHO 3ABUCAM OM pASMEWeHUss U YnopsaooueHus O6I0KO8 Mampuybl 6 OCHOGHOU namamu. B cmamve
npednazaemcs peuiams npooemy ONMUMAiIbHOZ0 PASMeWeHUs. Had 836CUEHHOM epaghe KOHPAUKMOE OI0K08 U pasiudans
06a cayuas HasHayeHus OOKO8 HA KUl OEe3KOHQIUKMHO20 U MUHUMATbHO-KOHGIUKMHO20. B nepsom ciyuae
Gopmynupyemcs npobrema pasHOMEPHOU pACKpACKU 2epaga KOHDAUKMOS, Npednazaomcs OemepMUHUpOBAHHbIU U
CIYYalHblll aneopummel ee pewerus. Bo emopom ciyuae gpopmynupyemcsa npodrema 636euteHHoll 0edheKmuoll packpacku
epaga npu ozpaHuveHuu HA YUCIO YEEMOs, NPeoNacaemcs CIVHAUHbIL aneopumm ee peuteHus. DKCnepumMeHmanbHble
Pe3VIbmamul NOKA3bIBAION, YMO CAYHANUHBIL AN2OPUMM PABHOMEPHOU PACKPACKU 0dem 8epXHION SPAHUYY pasmepa Koul
OUYeHb OAUBKYIO K HUDICHell 2paHuye, OYeHU8aemoll uepe3 NOJHBIL No0cpag), u nokasvieaem, umo 0OecKOH@IUKMHOe
pasmewerue mampuyvl 603moxcuo npu 0 = 0.5 ona M =4 unpu 6 = 0.1 ona M = 20. /[na manozo pazmepa xaus
836€UUEHHDIL 0eheKMHbIIL aneopumm odaem YuUcio OCMABUIUXCS KOHGAuUKmos 00 8.8 pas MeHvuiee HemM HAUATbHOe
pasmewerue. IIpednodxcenHvie MOOEIb U Al2OPUMMbL NPUMEHUMbL MAKHCe K k-KAHATbHOMY ACCOYUAMUBHOMY KIU.

3,2021 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

50 SALLNTA UHOOPMALINI

Kniouesnle cnosa: arcopumm noucka Kpamuamuux nymet, uepapxuieckas namams, Ko npamo20 omoopasicenus, npouseo-
OUMENbHOCIb, pasmeujeHie OaHHbIX, pagh KOHPIUKMOE OIOK08, PABHOMEPHAA PACKPACKA, OedeKmHas
packpacka.

Anatoly Prihozhy is a full professor at the Computer and system software
department of Belarus national technical university, doctor of science (1999)
and full professor (2001). His research interests include programming and hard-
ware description languages, parallelizing compilers, and computer aided design
techniques and tools for software and hardware at logic, high and system levels,
and for incompletely specified logical systems. He has over 300 publications in
Eastern and Western Europe, USA and Canada. Such worldwide publishers as
IEEE, Springer, Kluwer Academic Publishers, World Scientific and others have
published his works.

CUCTEMHbIV AHAJIU3 U MPUKITALHAS MIHOOPMATUKA 3,2021

