
DATA PROCESSING AND DECISION-MAKING 31

4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

UDC 004.4–004.9

PRIHOZHY А.А., ZHDANOUSKI А.М.

GENETIC ALGORITHM OF OPTIMIZING
THE QUALIFICATION OF PROGRAMMER TEAMS

Belarus national technical university

Abstract. The partitioning a set of professional programmers into a set of teams when a programming project specifies
requirements to the competency in various programming technologies and tools is a hard combinatorial problem. The paper
proposes a genetic algorithm, which is capable of finding competitive and high-quality partitioning solutions in acceptable
runtime. The algorithm introduces chromosomes in such a way as to assign each programmer to a team, define the team staff
and easily reconstruct the teams during optimization process. A fitness function characterizes each chromosome with re-
spect to the quality of the programmers partitioning. It accounts for the average qualification of teams and the qualification
of team best representatives on each of the technologies. The function recognizes the teams that meet all constraints on the
project and are workable from this point of view. It is also capable of recognizing the teams that do not meet the constraints
and are unworkable. The algorithm defines the genetic operations of selection, crossing and mutation in such a way as to
move programmers from unworkable to workable teams, to increase the number of workable teams, to ex-change program-
mers among workable teams, to increase the competency of every workable team, and thus to maximize the teams overall
qualification. Experimental results obtained on a set of programmers graduated from Belarus universities show the capabil-
ity of the genetic algorithm to find good partitioning solutions, maximize the teams’ competency and minimize the number of
unemployed programmers.

Keywords: optimization, genetic algorithm, programmer, team, technology, qualification

Introduction

A genetic algorithm is a meta-heuristic that
simulates the process of natural selection [1, 2].
Genetic algorithms are capable of generating
high-quality solutions to optimization problems
by means of operations such as selection, cross-
ing, and mutation. In a genetic algorithm, chro-
mosomes represent candidate solutions to an
optimization problem. Initial population of chro-
mosomes is generated randomly. The main loop
describes the evolution process, each iteration
of which produces a new generation of chromo-
somes. The fitness of every chromosome is evalu-
ated. The more fit chromosomes are randomly se-
lected as parents from the current population, and
new chromosomes are a result of recombination
or mutation of the parent chromosome gens. The
algorithm terminates when either a given number
of generations has been produced, or a stagnation
of population occurs.

Genetic algorithms successfully solve prob-
lems in many application fields. Work [3] ap-
plies a genetic algorithm to finding a valid and
feasible path between two positions of the mo-
bile robot, while avoiding obstacles and optimiz-
ing the distance, safety…etc. Work [4] proposes

a new prototype of the smart vehicle parking sys-
tem; a genetic algorithm addresses the issue of
scheduling the vehicle to the parking bay. Paper
[5] analyzes the genetic algorithm approach for
graph coloring corresponding to the university
timetable problem; the improvement of the initial
solution is exhibited by experimental results. In
[6], the authors propose a genetic algorithm for
the dynamic airspace configuration; the obtained
solutions outperform the existing airspace config-
urations. Work [7] solves the problem of dataflow
pipeline optimization by introducing a genetic al-
gorithm, which performs tuning of optimization
heuristics.

Agile technology [8] aims at the flexible soft-
ware development and finds solutions due to the
joint efforts of development teams and custom-
ers. Many technological environments use Agile,
but it requires further development for distrib-
uted programming teams. Agent-based [9] evo-
lutionary optimization methods are capable of
performing the management of teams. Work [10]
formulated the problem of optimal partitioning of
a given set of programmers into teams, and work
[11] proposed an approach for the problem solv-
ing based on genetic algorithms.

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020

32 ОБРАБОТКА ИНфОРМАцИИ И ПРИНяТИЕ РЕшЕНИй

This paper formulates the problem of pro-
grammer teams optimization, proposes a genetic
algorithm of optimal partitioning a set of pro-
grammers into teams, introduces a fitness func-
tion for evaluating the quality of solutions found,
proposes mechanisms of teams reconstruction
based on genetic operations, shows the capability
of generating competitive solutions.

Optimizing the size and staff
of programming teams on qualification

Let P = {p1,…, pn} be a set of programmers,
and T ={t1,…, tm} be a set of programming tech-
nologies. Let Qualif(p) ∈ [0, 1] be a qualification
level of programmer p∈P with respect to the lev-
el of knowledge / competences in technologies of
set T in comparison with the maximally feasible
level. Qualification Qualif(p) is a weighted sum
of qualifications Qualif(p, t) of programmer p on
each technology t∈T. We use a questionnaire to
obtain a value of Qualif(p, t) of each programmer
on each technology.

Let the set P of programmers be divided
into k teams, which produce a partitioning set
G = {g1,…, gk} such that gi ∩ gj = ∅, i ≠ j and
g1 ∪…∪gk = P. Programmers of team g∈G
constitute a set Pg. The number of programmers
in g is ng, The overall qualification of team g is
Qualif(g). It depends on both ng and Qualif(p)
of each p ∈ g in sophisticated nonlinear man-
ner. Team qualification Qualif(g) is an integral
metric.

Given a partition G, we evaluate the over-
all qualification of teams of G with a sum of all
teams’ qualifications:
 () ()

g G
Qualification G Qualif g

∈
= ∑ (1)

Let Ω be a set of all feasible partitions of pro-
grammer set P into a set G of teams. The partition
G has qualification Qualification(G). It is easy to
see, that the cardinality of set Ω grows exponen-
tially of the size of set P. The goal of this paper is
to develop a method of finding in Ω a partition,
which maximizes the overall qualification:
 max ()

G
Qualification G

∈Ω
 (2)

Usually we have to solve this task when sev-
eral constraints on technologies, programmers
and teams are given. The constraints as follows
are usually associated with a particular program-
ming project.

Constraint 1. It describes a lower level of
qualification of programmer p ∈ P regarding
technology t ∈ T for all programmers and all
technologies.

Constraint 2. It describes a lower level of
qualification of the best representative of team g
∈ G regarding technology t ∈ T for all teams and
all technologies.

Constraint 3. It describes a threshold overall
qualification of each team g ∈ G over all demand-
ed technologies.

Genetic algorithm of optimal partitioning
a set of programmers into teams

The genetic algorithm (GA) implements a ran-
dom process of evolution of a population of chro-
mosomes (decomposition solutions) in order to
find the best partitioning of the set of program-
mers into teams. We build a chromosome as a vec-
tor of genes that correspond to the programmers:
 ()1,..., ,...,i nc h h h= (3)

where hi is a gen, which represent a team num-
ber of G the programmer i belongs to. It is obvi-
ously that {h1} ∪…∪ {hn} = G and h1 ∪…∪ hn
= P. The set Pi(c) of programmers chromosome c
assigns to team i is
 { }1() | , ...i

jP c j h i j n= = = (4)

Therefore, chromosome c completely deter-
mines the staff of each team of G.

Since chromosome c describes a partition G,
the partition can be characterized by parameter
Qualification(G). We consider the parameter as
a value of the chromosome fitness function. The
goal of GA is to find a chromosome with the max-
imal value of this function.

Figure 1 depicts a GA flow. Firstly, GA ran-
domly initializes the population of chromosomes
(programmer partitions) in such a way as to assign
each programmer to an available team. The num-
ber of teams varies randomly for each initial chro-
mosome in a certain range. Secondly, GA runs
a loop each iteration of which produces a new
generation of programmers partitioning by means
of such genetic operations as selection, crossover
and mutation. It uses the chromosomes of new
generation to update the current population.

The selection operation chooses parents ac-
cording to the rule of roulette wheel for perform-
ing crossing and mutation operations. GA uses

DATA PROCESSING AND DECISION-MAKING 33

4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

additional types of selecting chromosomes to pro-
duce the next generation of partitions and to up-
date the population.

The crossover operation performs the recom-
bination of two chromosomes, thus moving ran-
domly selected programmers from one team to
other team. The crossover yields two offsprings.
As a result, a team can appear which includes no
programmer. Such a situation may require the
re-enumeration of teams. Additionally it requires
facilities that are capable of extending the set of
teams.

Figure 1 – Genetic algorithm of optimizing
the partitioning of programmers into teams

The genetic mutation operation randomly
chooses one or more programmers in a chromo-
some and moves them from one team to anoth-
er. Each chromosome divides all teams into two
classes. The first class includes teams that meet
all three constraints described in the previous sec-
tion. The second class includes teams that fail to

meet at least one of the three constraints. We con-
sider programmers of such a team as temporarily
unemployed. The evolution process modeled by
GA can potentially find a team for each program-
mer who has obtained a demanded qualification.
We represent the loop exit condition via a con-
straint on the number of loop iterations or a con-
straint on the GA runtime. The chromosome with
the highest value of fitness function is the solution
of the optimization problem.

Chromosome fitness function that evaluates
the quality of programmers partitioning

A hierarchy of formulas shown in Figure 2
defines a procedure of calculating the value of fit-
ness function that characterizes the overall qual-
ification of partitioning G of programmers into
teams. According to (1), the overall Qualifica-
tion(G) is a sum of the qualifications Qualif(g),
g∈G.

The qualification Qualif(g) of team g is
a weighted team qualification Qualifw(g) if the
latter is equal or larger than a threshold quali-
fication RQg, otherwise we consider team g as
unworkable and exclude it from partitioning by
zeroing Qualif(g). It is reasonable to take the
value of RQg from the range [0.5, 1.0], depend-
ing on the requirements of the programming
project.

We estimate the weighted qualification Qual-
ifw(g) as the sum of a qualification Qualifbest(g) of
the best representatives on all technologies with
a weight λ, and an average qualification Qualifa-

vg(g) of the team’s programmers on all technolo-
gies with a weight 1‑λ. The weighted qualification
can take any value of the range [0, 1]. The larger
the value of λ, the higher the importance of the
best representatives qualification is. The lower the
value of λ, the larger the importance of the av-
erage qualification of the team programmers is.
The qualification of best representatives describes
opportunities for the growth of the average team
competency.

We estimate the average qualification Quali-
favg(g) of team g, that includes ng programmers,
as an average value of programmers qualification
Qualif(p) over all programmers p∈Pg. The qual-
ification Qualif(p) with respect to the level of
competency in technologies of set T in relation to
the maximum level of competency takes into ac-
count a rank of the technology, the competency

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020

34 ОБРАБОТКА ИНфОРМАцИИ И ПРИНяТИЕ РЕшЕНИй

of programmer in the technology, and a threshold
value of the competency.

The best representative qualification Qua-
lif best(g) is the most important parameter that
characterizes team g, It equals zero if there is at
least one mandatory technology for team g, for
which the level of qualification of the best repre-
sentative is less than a threshold value RLg

t. The
justification is that the team is not capable of car-
rying out projects without highly qualified pro-
grammers in key technologies.

Reconstruction of teams
by genetic operations

Let us consider the process of crossing and
mutation of chromosomes, which represents
a repartitioning a set of programmers into teams.
To do this, we use two example chromosomes, c1
and c2 chosen as parents at an iteration of the GA
main loop. These chromosomes have the fitness
function value of 2.548 and 2.551 respective-
ly. Figure 3 depicts the process of chromosome
reconstruction.

Figure 2 – Calculation of fitness function that evaluates the overall programmer teams qualification

Figure 3 – Application of genetic operations to two parent chromosomes

DATA PROCESSING AND DECISION-MAKING 35

4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

Crossing consists in breaking two selected pa-
rental chromosomes and recombining the result-
ing chromosomal segments, which give a pair of
offspring chromosomes. In the current version of
GA, we use a two-point crossover. It divides each
of the parental chromosomes into 3 parts (in Fig-
ure 3, parts 1 and 3 are in white, and part 2 is in
black) and generates on their basis two offsprings
c3 and c4 according to the rules 1–2–1 and 2–1–2
(numbers indicate parents of the parts). The fit-
ness function value of chromosomes c3 and c4 is
2.535 and 1.451 respectively.

Mutations, i. e. random changes in chromosome
gene values are intended to expand the search space
when solving the optimization problem. If in a gene
of the chromosomes of the initial population only
a part of the possible values was generated, then the
execution of the operators of crossing and selection
cannot produce the values that have dropped out of
consideration. The mutation operation is capable of
creating new teams of programmers or combining
existing ones. It modifies one of the crossover’s

offsprings with a certain probability. In Figure 3, the
first offspring c3 underwent a mutation, as a result
the value of second gene was changed from 6 to 4,
which means that the programmer, p2 was moved
from one group to another in chromosome c5. The
fitness function of c5 has a value of 2.566. Chro-
mo-some c6 is identical to chromosome c4 as no
mu-tation has been performed.

GA selects a best parent chromosome and a best
offspring in the next generation. Thus, the chro-
mosome c2 with the overall teams’ qualification of
2.551 becomes the first chromosome c7 that goes
to the next generation. The best offspring c5 with
the overall teams’ qualification of 2.566 becomes
the second chromosome c8 that replaces the worst
parent chromosome c1 in the next generation.

Figure 4 illustrates the step by step reparti-
tioning of the programmer teams induced by the
genetic operations. Team 1 contains programmers
not included in the workable teams enumerated
starting from two; therefore, we call such a team
as unemployed team. This team includes the

Figure 4 – Reconstruction of programmer teams by genetic operations

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020

36 ОБРАБОТКА ИНфОРМАцИИ И ПРИНяТИЕ РЕшЕНИй

representatives of all teams defined by a chromo-
some the qualification of which do not meet the
specified constraints. During functioning, GA may
distribute programmers of the unemployed team
among workable teams, if this will maximize the
overall teams’ qualification, and the qualification
will be larger than the threshold level.

Experimental results

We have developed a computer program that
implements the proposed GA, and have carried
out computational experiments on the optimiza-
tion of partitioning 24 professional programmers
into teams. As many as 16 programming tech-
nologies used for estimating the qualification of
programmers and teams. Questionnaires allowed
for obtaining the level of each programmer com-
petency in each of the technologies.

Table 1 reports experimental results obtained
on eight runs of GA done at various values of
threshold qualification of one team: 0.4, 0.45,
0.5, 0.55, 0.6, 0.65, 0.7, and 0.75. For each run,

the key measured parameters are the number of
work-able teams and the actual value of the over-
all teams’ qualification. An additional important
parameter is the number of programmers involved
in the workable teams. The rest programmers are
in reserve. The two key parameters allow for the
calculation of the average team qualification. This
qualification is always larger than the threshold
team qualification. The increase of threshold qual-
ification from 0.4 to o.75 with the step of 0.05 has
given the number of workable teams of 9, 8, 8, 8,
6, 5, 3, and 2. It has also given the overall qualifi-
cations of 5.42, 5.05, 5.04, 5.01, 4.10, 3.48, 2.27,
and 1.57 respectively. The number of teams and
their overall qualification falls because of more
severe requirements to the team qualification. As
for the team actual average qualification, it re-
mains al-most the same at the values of threshold
qualification from 0.4 to 0.55, and then it grows
rapidly reducing the number of teams essentially
and increasing the number of unemployed pro-
grammers. Table 1 provides detailed information

T a b l e 1. Partitioning of a set of 24 professional programmers into teams by GA on 16 technologies

Run Team qualification
constraint

Number of teams
(programmers)

Overall
qualification

Team average
qualification

Teams
count Staff of teams

1 0.40 9 (22) 5.42 0.602

1–9 g1={6,7,15,17,24}, g2={11,20,23}, g3={1,3,5,14},
g4={8,19,21}, g5={18}, g6={16}, g7={22},
g8={2,12}, g9={10,13},

reserve {4,9}

2 0.45 8 (23) 5.05 0.631

1–8 g1={8,13,15,21,24}, g2={2,5,6,9,14}, g3={3,4,7},
g4={12,22}, g5={10,11}, g6={16,19},
g7={1,17,23}, g8={18}

reserve {20}

3 0.50 8 (23) 5.04 0.630

1–8 g1={4,11,17,20}, g2={3,5,14,19}, g3={7,9,13,22},
g4={1,12,15,24}, g5={2,6,21}, g6={18},
g7={8,23}, g8={16}

reserve {10}

4 0.55 8 (21) 5.01 0.626

1–8 g1={3,4,6,9,11,17}, g2={5,19,21,24}, g3={10,14},
g4={8,12,15}, g5={1,7}, g6={18},
g7={16}, g8={13,22}

reserve {2,20,23}

5 0.60 6 (22) 4.10 0.683
1–6 g1={2,4,7,9,14,16}, g2={3,6,10,13,17,21,24},

g3={12,22}, g4={1,5,8,23}, g5={11,15}, g6={18}
reserve {19,20}

6 0.65 5 (16) 3.48 0.696
1–5 g1={1,2,4,5,8,14,15}, g2={12,16,20}, g3={10,11},

g4={19,22,23}, g5={18}
reserve {3,6,7,9,13,17,21,24}

7 0.70 3 (13) 2.27 0.757
1–3 g1={2,9,10,11,13,14,22,23}, g2={7,12,15,16},

g3={18}
reserve {1,3,4,5,6,8,17,19, 20,21,24}

8 0.75 2 (6) 1.57 0.785
1–2 g1={7,10,11,12,15}, g2={18}

reserve {1,2,3,4,5,6,8,9,13,14,16,17,19,20, 21,22,23,24}

DATA PROCESSING AND DECISION-MAKING 37

4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE4, 2020 SYSTEM ANALYSIS AND APPLIED INFORMATION SCIENCE

on the number of programmers and on the staff of
each workable team. The programmers included
in a small team are usually more qualified on av-
erage over all technologies. The programmers in-
cluded in a large team are usually less qualified on
aver-age or are highly qualified in restricted set of
technologies.

GA has increased the overall teams’ qual-
ification within a single run of the algorithm by
about 30 % against the best partitioning in the ini-
tial random population of chromosomes. It means
the genetic operation are an effective facility of
searching for an optimal solution.

In order to find an optimal partitioning of
a large set of programmers, we develop a parallel
version of GA. We use methods of work [12] to
create an efficient parallel genetic algorithm for
performing on parallel architectures.

Conclusion

Partitioning a set of professional programmers
into workable teams is a hard combinatorial prob-
lem when the goal is to achieve the maximal over-
all technological competency while working on an
IT project. The genetic algorithm we propose in
the paper is capable of finding good solutions of
the problem. Depending on the project constraints
and on the set of participant candidates, the al-
gorithm finds a preferable number of teams, the
optimal size and staff of each team, which maxi-
mize the overall teams’ qualification and minimize
the number of skilled programmers not involved
in the project. Experimental results obtained for
programmers graduated from Belarus universi-
ties show that the proposed genetic operations
efficiently recombine promising solutions and ex-
haustively scan the search space.

REFERENCES
1. Barricelli, N. A. Symbio genetic evolution processes realized by artificial methods / N. A. Barricelli // Methodos, 1957,

pp. 143–182.
2. McCall, J. Genetic algorithms for modelling and optimization / J. McCall // Journal of Computational and Applied Math-

ematics, Vol. 184, 2005, pp. 205–222.
3. Lamini, C. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning / C. Lamini, S. Benhlima,

A. Elbekri // Procedia Computer Science, Vol. 127, 2018, pp. 180–189.
4. Thomas, D., Kovoor B. C. A Genetic Algorithm Approach to Autonomous Smart Vehicle Parking system / D. Thomas,

B. C. Kovoor // Procedia Computer Science, Vol. 125, 2018, pp. 68–76.
5. Assi, M. Genetic Algorithm Analysis using the Graph Coloring Method for Solving the University Timetable Problem /

Assi, M., Halawi, B., Haraty, R.A. // Procedia Computer Science, Vol. 126, 2018, pp. 899–906.
6. M. Sergeeva, D. Delahaye, C. Mancel, A. Vidosavljevic. Dynamic airspace configuration by genetic algorithm / // jour-

nal of traffic and transportation engineering 2017; 4 (3): pp. 300–314.
7. Prihozhy, А. A. Heuristic genetic algorithm for computational pipelines optimization / A. A. Prihozhy, A. M. Zhdanouski,

O. N. Karasik, M. Mattavelli // Doklady BGUIR, 2017, № 1, с. 34–41.
8. Joshi, S. Agile Development – Working with Agile in a Distributed Team Environment / S. Joshi // MSDN Magazine,

2012, Vol.27, No.1, pp.1–6.
9. Müller, J. P., Rao, A. S., Singh, M. P. A-Teams: An Agent Architecture for Optimization and Decision- Support, Proceed-

ings 5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998, pp. 261–276.
10. Prihozhy, А. А. Method of qualification estimation and optimization of professional teams of programmers / А. А. Pri-

hozhy, А. М. Zhdanouski // System analysis and applied information science. – № 2. – 2018. – С. 4–12.
11. Prihozhy, A. Genetic algorithm of optimizing the size, staff and number of professional teams of programmers / A. Pri-

hozhy, A. Zhdanouski // Open Semantic Technologies for Intelligent Systems: Research Paper Collection, Issue 3. – Minsk,
BSUIR, 2019. – P. 305–310.

12. Prihozhy, A. A. Analysis, transformation and optimization for high performance parallel computing / A. A. Prihozhy //
Minsk, BNTU. – 2019. – 229 p.

ЛИТЕРАТУРА
1. Barricelli, N. A. Symbio genetic evolution processes realized by artificial methods / N. A. Barricelli // Methodos, 1957,

pp. 143–182.
2. McCall, J. Genetic algorithms for modelling and optimization / J. McCall // Journal of Computational and Applied

Mathematics, Vol. 184, 2005, pp. 205–222.
3. Lamini, C. Genetic Algorithm Based Approach for Autonomous Mobile Robot Path Planning / C. Lamini, S. Benhlima,

A. Elbekri // Procedia Computer Science, Vol. 127, 2018, pp. 180–189.
4. Thomas, D., Kovoor B. C. A Genetic Algorithm Approach to Autonomous Smart Vehicle Parking system / D. Thomas,

B. C. Kovoor // Procedia Computer Science, Vol. 125, 2018, pp. 68–76.
5. Assi, M. Genetic Algorithm Analysis using the Graph Coloring Method for Solving the University Timetable Problem /

Assi, M., Halawi, B., Haraty, R.A. // Procedia Computer Science, Vol. 126, 2018, pp. 899–906.

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2020

38 ОБРАБОТКА ИНфОРМАцИИ И ПРИНяТИЕ РЕшЕНИй

6. M. Sergeeva, D. Delahaye, C. Mancel, A. Vidosavljevic. Dynamic airspace configuration by genetic algorithm / //
journal of traffic and transportation engineering 2017; 4 (3): pp. 300–314.

7. Прихожий, А. Эвристический генетический алгоритм оптимизации вычислительных конвейеров / А. А. Прихо-
жий, А. М. Ждановский, О. Н. Карасик, М. Маттавелли // Доклады БГУИР, 2017, № 1, с. 34–41.

8. Joshi, S. Agile Development – Working with Agile in a Distributed Team Environment / S. Joshi // MSDN Magazine,
2012, Vol.27, No.1, pp.1–6.

9. Müller, J. P., Rao, A. S., Singh, M. P. A-Teams: An Agent Architecture for Optimization and Decision- Support,
Proceedings 5th International Workshop, ATAL’98 Paris, France, July 4–7, 1998, pp. 261–276.

10. Прихожий, А. А. Метод оценки квалификации и оптимизация состава профессиональных групп программистов /
А. А. Прихожий, А. М. Ждановский // Системный анализ и прикладная информатика. – № 2. – 2018. – С. 4–12.

11. Prihozhy, A. Genetic algorithm of optimizing the size, staff and number of professional teams of programmers /
A. Prihozhy, A. Zhdanouski // Open Semantic Technologies for Intelligent Systems: Research Paper Collection, Issue
3. – Minsk, BSUIR, 2019. – P. 305–310.

12. Prihozhy, A. A. Analysis, transformation and optimization for high performance parallel computing / A. A. Prihozhy //
Minsk, BNTU. – 2019. – 229 p.

ПРИХОЖИЙ A. А., ЖДАНОВСКИЙ A. А.

ГЕНЕТИЧЕСКИЙ АЛГОРИТМ
ОПТИМИЗАЦИИ КВАЛИФИКАЦИИ ГРУПП ПРОГРАМИСТОВ

Аннотация. Разбиение множества профессиональных программистов на множество команд, когда
программистский проект определяет требования к компетенциям в различных технологиях и инструментах
программирования, представляет собой сложную комбинаторную проблему. В статье предлагается генетический
алгоритм, который способен находить конкурентоспособные и высококачественные решения по разбиению за
приемлемое процессорное время. Алгоритм вводит хромосомы таким образом, чтобы распределить каждого
программиста в команду, определить состав команд и легко реконструировать команды в процессе оптимизации.
Функция приспособленности характеризует каждую хромосому с точки зрения качества разбиения программистов.
В ней учитывается средняя квалификация команд и квалификация лучших представителей команд по каждой из
технологий. Функция распознает команды, которые удовлетворяют всем ограничениям проекта и являются
работоспособными с этой точки зрения. Она также способна распознавать команды, которые не соответствуют
требованиям и не являются работоспособными. Алгоритм определяет генетические операции отбора, скрещивания
и мутации таким образом, чтобы перемещать программистов из неработоспособных команд в работоспособные,
увеличивать количество работоспособных команд, обмениваться программистами между работоспособными
командами, повышать компетентность каждой работоспособной команды, и, таким образом, максимально
увеличивать общую квалификацию команд. Экспериментальные результаты, полученные на выборке программистов,
окончивших вузы Беларуси, показывают способность генетического алгоритма находить хорошие решения для
разбиения, максимизировать компетенцию команд и минимизировать количество не работающих программистов.

Ключевые слова: оптимизация, генетический алгоритм, программист, команда, технология, квалификация.

Anatoly Prihozhy received his Diploma of Electrical Engineering from the
State Polytechnic, Minsk, Belarus in 1975, his PhD degree in computer- aided
design from the National Academy of Sciences Minsk, Belarus in 1984, and his
Doctor Habilitation degree in computer sciences from Ukraine, Kyiv and Bela-
rus, Minsk in 1999. His research interests include programming, hardware and
system description languages, compilers and tools, system-, high- and logic-
level computer aided design and optimization of parallel and incompletely speci-
fied digital systems

Zhdanouski Arseni is a postgraduate of the Computer and system software de-
partment of Belarusian national technical university, and a software engineer
at EPAM Systems. His research interests include programming languages and
techlogies, and methods of optimization.

