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Abstract. The partitioning a set of professional programmers into a set of teams when a programming project specifies 
requirements to the competency in various programming technologies and tools is a hard combinatorial problem. The paper 
proposes a genetic algorithm, which is capable of finding competitive and high-quality partitioning solutions in acceptable 
runtime. The algorithm introduces chromosomes in such a way as to assign each programmer to a team, define the team staff 
and easily reconstruct the teams during optimization process. A fitness function characterizes each chromosome with re-
spect to the quality of the programmers partitioning. It accounts for the average qualification of teams and the qualification 
of team best representatives on each of the technologies. The function recognizes the teams that meet all constraints on the 
project and are workable from this point of view. It is also capable of recognizing the teams that do not meet the constraints 
and are unworkable. The algorithm defines the genetic operations of selection, crossing and mutation in such a way as to 
move programmers from unworkable to workable teams, to increase the number of workable teams, to ex-change program-
mers among workable teams, to increase the competency of every workable team, and thus to maximize the teams overall 
qualification. Experimental results obtained on a set of programmers graduated from Belarus universities show the capabil-
ity of the genetic algorithm to find good partitioning solutions, maximize the teams’ competency and minimize the number of 
unemployed programmers.
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Introduction

A genetic algorithm is a meta-heuristic that 
simulates the process of natural selection [1, 2]. 
Genetic algorithms are capable of generating 
high-quality solutions to optimization problems 
by means of operations such as selection, cross-
ing, and mutation. In a genetic algorithm, chro-
mosomes represent candidate solutions to an 
optimization problem. Initial population of chro-
mosomes is generated randomly. The main loop 
describes the evolution process, each iteration 
of which produces a new generation of chromo-
somes. The fitness of every chromosome is evalu-
ated. The more fit chromosomes are randomly se-
lected as parents from the current population, and 
new chromosomes are a result of recombination 
or mutation of the parent chromosome gens. The 
algorithm terminates when either a given number 
of generations has been produced, or a stagnation 
of population occurs.

Genetic algorithms successfully solve prob-
lems in many application fields. Work [3] ap-
plies a genetic algorithm to finding a valid and 
feasible path between two positions of the mo-
bile robot, while avoiding obstacles and optimiz-
ing the distance, safety…etc. Work [4] proposes 

a new prototype of the smart vehicle parking sys-
tem; a genetic algorithm addresses the issue of 
scheduling the vehicle to the parking bay. Paper 
[5] analyzes the genetic algorithm approach for 
graph coloring corresponding to the university 
timetable problem; the improvement of the initial 
solution is exhibited by experimental results. In 
[6], the authors propose a genetic algorithm for 
the dynamic airspace configuration; the obtained 
solutions outperform the existing airspace config-
urations. Work [7] solves the problem of dataflow 
pipeline optimization by introducing a genetic al-
gorithm, which performs tuning of optimization 
heuristics.

Agile technology [8] aims at the flexible soft-
ware development and finds solutions due to the 
joint efforts of development teams and custom-
ers. Many technological environments use Agile, 
but it requires further development for distrib-
uted programming teams. Agent-based [9] evo-
lutionary optimization methods are capable of 
performing the management of teams. Work [10] 
formulated the problem of optimal partitioning of 
a given set of programmers into teams, and work 
[11] proposed an approach for the problem solv-
ing based on genetic algorithms.
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This paper formulates the problem of pro-
grammer teams optimization, proposes a genetic 
algorithm of optimal partitioning a set of pro-
grammers into teams, introduces a fitness func-
tion for evaluating the quality of solutions found, 
proposes mechanisms of teams reconstruction 
based on genetic operations, shows the capability 
of generating competitive solutions.

Optimizing the size and staff  
of programming teams on qualification

Let P = {p1,…, pn} be a set of programmers, 
and T ={t1,…, tm} be a set of programming tech-
nologies. Let Qualif(p) ∈ [0, 1] be a qualification 
level of programmer p∈P with respect to the lev-
el of knowledge / competences in technologies of 
set T in comparison with the maximally feasible 
level. Qualification Qualif(p) is a weighted sum 
of qualifications Qualif(p, t) of programmer p on 
each technology t∈T. We use a questionnaire to 
obtain a value of Qualif(p, t) of each programmer 
on each technology.

Let the set P of programmers be divided 
into k teams, which produce a partitioning set 
G = {g1,…, gk} such that gi ∩ gj = ∅, i ≠ j and 
g1 ∪…∪gk = P. Programmers of team g∈G 
constitute a set Pg. The number of programmers 
in g is ng, The overall qualification of team g is 
Qualif(g). It depends on both ng and Qualif(p) 
of each p ∈ g in sophisticated nonlinear man-
ner. Team qualification Qualif(g) is an integral 
metric.

Given a partition G, we evaluate the over-
all qualification of teams of G with a sum of all 
teams’ qualifications:
 ( ) ( )

g G
Qualification G Qualif g

∈
= ∑  (1)

Let Ω be a set of all feasible partitions of pro-
grammer set P into a set G of teams. The partition 
G has qualification Qualification(G). It is easy to 
see, that the cardinality of set Ω grows exponen-
tially of the size of set P. The goal of this paper is 
to develop a method of finding in Ω a partition, 
which maximizes the overall qualification:
 max ( )

G
Qualification G

∈Ω
 (2)

Usually we have to solve this task when sev-
eral constraints on technologies, programmers 
and teams are given. The constraints as follows 
are usually associated with a particular program-
ming project.

Constraint 1. It describes a lower level of 
qualification of programmer p ∈ P regarding 
technology t ∈ T for all programmers and all 
technologies.

Constraint 2. It describes a lower level of 
qualification of the best representative of team g 
∈ G regarding technology t ∈ T for all teams and 
all technologies.

Constraint 3. It describes a threshold overall 
qualification of each team g ∈ G over all demand-
ed technologies.

Genetic algorithm of optimal partitioning 
a set of programmers into teams

The genetic algorithm (GA) implements a ran-
dom process of evolution of a population of chro-
mosomes (decomposition solutions) in order to 
find the best partitioning of the set of program-
mers into teams. We build a chromosome as a vec-
tor of genes that correspond to the programmers:
 ( )1,..., ,...,i nc h h h=  (3)

where hi is a gen, which represent a team num-
ber of G the programmer i belongs to. It is obvi-
ously that {h1} ∪…∪ {hn} = G and h1 ∪…∪ hn 
= P. The set Pi(c) of programmers chromosome c 
assigns to team i is
 { }1( ) | , ...i

jP c j h i j n= = =  (4)

Therefore, chromosome c completely deter-
mines the staff of each team of G.

Since chromosome c describes a partition G, 
the partition can be characterized by parameter 
Qualification(G). We consider the parameter as 
a value of the chromosome fitness function. The 
goal of GA is to find a chromosome with the max-
imal value of this function.

Figure 1 depicts a  GA flow. Firstly, GA ran-
domly initializes the population of chromosomes 
(programmer partitions) in such a way as to assign 
each programmer to an available team. The num-
ber of teams varies randomly for each initial chro-
mosome in a  certain range. Secondly, GA runs 
a  loop each iteration of which produces a  new 
generation of programmers partitioning by means 
of such genetic operations as selection, crossover 
and mutation. It uses the chromosomes of new 
generation to update the current population.

The selection operation chooses parents ac-
cording to the rule of roulette wheel for perform-
ing crossing and mutation operations. GA uses 
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additional types of selecting chromosomes to pro-
duce the next generation of partitions and to up-
date the population.

The crossover operation performs the recom-
bination of two chromosomes, thus moving ran-
domly selected programmers from one team to 
other team. The crossover yields two offsprings. 
As a result, a team can appear which includes no 
programmer. Such a situation may require the 
re-enumeration of teams. Additionally it requires 
facilities that are capable of extending the set of 
teams.

Figure 1 –  Genetic algorithm of optimizing  
the partitioning of programmers into teams

The genetic mutation operation randomly 
chooses one or more programmers in a chromo-
some and moves them from one team to anoth-
er. Each chromosome divides all teams into two 
classes. The first class includes teams that meet 
all three constraints described in the previous sec-
tion. The second class includes teams that fail to 

meet at least one of the three constraints. We con-
sider programmers of such a team as temporarily 
unemployed. The evolution process modeled by 
GA can potentially find a team for each program-
mer who has obtained a demanded qualification. 
We represent the loop exit condition via a con-
straint on the number of loop iterations or a con-
straint on the GA runtime. The chromosome with 
the highest value of fitness function is the solution 
of the optimization problem.

Chromosome fitness function that evaluates 
the quality of programmers partitioning

A hierarchy of formulas shown in Figure 2 
defines a procedure of calculating the value of fit-
ness function that characterizes the overall qual-
ification of partitioning G of programmers into 
teams. According to (1), the overall Qualifica-
tion(G) is a sum of the qualifications Qualif(g), 
g∈G.

The qualification Qualif(g) of team g is 
a weighted team qualification Qualifw(g) if the 
latter is equal or larger than a threshold quali-
fication RQg, otherwise we consider team g as 
unworkable and exclude it from partitioning by 
zeroing Qualif(g). It is reasonable to take the 
value of RQg from the range [0.5, 1.0], depend-
ing on the requirements of the programming 
project.

We estimate the weighted qualification Qual-
ifw(g) as the sum of a qualification Qualifbest(g) of 
the best representatives on all technologies with 
a weight λ, and an average qualification Qualifa-

vg(g) of the team’s programmers on all technolo-
gies with a weight 1‑λ. The weighted qualification 
can take any value of the range [0, 1]. The larger 
the value of λ, the higher the importance of the 
best representatives qualification is. The lower the 
value of λ, the larger the importance of the av-
erage qualification of the team programmers is. 
The qualification of best representatives describes 
opportunities for the growth of the average team 
competency.

We estimate the average qualification Quali-
favg(g) of team g, that includes ng programmers, 
as an average value of programmers qualification 
Qualif(p) over all programmers p∈Pg. The qual-
ification Qualif(p) with respect to the level of 
competency in technologies of set T in relation to 
the maximum level of competency takes into ac-
count a  rank of the technology, the competency 
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of programmer in the technology, and a threshold 
value of the competency.

The best representative qualification Qua-
lif  best(g) is the most important parameter that 
characterizes team g, It equals zero if there is at 
least one mandatory technology for team g, for 
which the level of qualification of the best repre-
sentative is less than a threshold value RLg

t. The 
justification is that the team is not capable of car-
rying out projects without highly qualified pro-
grammers in key technologies.

Reconstruction of teams  
by genetic operations

Let us consider the process of crossing and 
mutation of chromosomes, which represents 
a repartitioning a set of programmers into teams. 
To do this, we use two example chromosomes, c1 
and c2 chosen as parents at an iteration of the GA 
main loop. These chromosomes have the fitness 
function value of 2.548 and 2.551 respective-
ly. Figure 3 depicts the process of chromosome 
reconstruction.

Figure 2 –  Calculation of fitness function that evaluates the overall programmer teams qualification

Figure 3 –  Application of genetic operations to two parent chromosomes
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Crossing consists in breaking two selected pa-
rental chromosomes and recombining the result-
ing chromosomal segments, which give a pair of 
offspring chromosomes. In the current version of 
GA, we use a two-point crossover. It divides each 
of the parental chromosomes into 3 parts (in Fig-
ure 3, parts 1 and 3 are in white, and part 2 is in 
black) and generates on their basis two offsprings 
c3 and c4 according to the rules 1–2–1 and 2–1–2 
(numbers indicate parents of the parts). The fit-
ness function value of chromosomes c3 and c4 is 
2.535 and 1.451 respectively.

Mutations, i. e. random changes in chromosome 
gene values are intended to expand the search space 
when solving the optimization problem. If in a gene 
of the chromosomes of the initial population only 
a part of the possible values was generated, then the 
execution of the operators of crossing and selection 
cannot produce the values that have dropped out of 
consideration. The mutation operation is capable of 
creating new teams of programmers or combining 
existing ones. It modifies one of the crossover’s 

offsprings with a certain probability. In Figure 3, the 
first offspring c3 underwent a mutation, as a result 
the value of second gene was changed from 6 to 4, 
which means that the programmer, p2 was moved 
from one group to another in chromosome c5. The 
fitness function of c5 has a value of 2.566. Chro-
mo-some c6 is identical to chromosome c4 as no 
mu-tation has been performed.

GA selects a best parent chromosome and a best 
offspring in the next generation. Thus, the chro-
mosome c2 with the overall teams’ qualification of 
2.551 becomes the first chromosome c7 that goes 
to the next generation. The best offspring c5 with 
the overall teams’ qualification of 2.566 becomes 
the second chromosome c8 that replaces the worst 
parent chromosome c1 in the next generation.

Figure 4 illustrates the step by step reparti-
tioning of the programmer teams induced by the 
genetic operations. Team 1 contains programmers 
not included in the workable teams enumerated 
starting from two; therefore, we call such a team 
as unemployed team. This team includes the 

Figure 4 –  Reconstruction of programmer teams by genetic operations
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representatives of all teams defined by a chromo-
some the qualification of which do not meet the 
specified constraints. During functioning, GA may 
distribute programmers of the unemployed team 
among workable teams, if this will maximize the 
overall teams’ qualification, and the qualification 
will be larger than the threshold level.

Experimental results

We have developed a computer program that 
implements the proposed GA, and have carried 
out computational experiments on the optimiza-
tion of partitioning 24 professional programmers 
into teams. As many as 16 programming tech-
nologies used for estimating the qualification of 
programmers and teams. Questionnaires allowed 
for obtaining the level of each programmer com-
petency in each of the technologies.

Table 1 reports experimental results obtained 
on eight runs of GA done at various values of 
threshold qualification of one team: 0.4, 0.45, 
0.5, 0.55, 0.6, 0.65, 0.7, and 0.75. For each run, 

the key measured parameters are the number of 
work-able teams and the actual value of the over-
all teams’ qualification. An additional important 
parameter is the number of programmers involved 
in the workable teams. The rest programmers are 
in reserve. The two key parameters allow for the 
calculation of the average team qualification. This 
qualification is always larger than the threshold 
team qualification. The increase of threshold qual-
ification from 0.4 to o.75 with the step of 0.05 has 
given the number of workable teams of 9, 8, 8, 8, 
6, 5, 3, and 2. It has also given the overall qualifi-
cations of 5.42, 5.05, 5.04, 5.01, 4.10, 3.48, 2.27, 
and 1.57 respectively. The number of teams and 
their overall qualification falls because of more 
severe requirements to the team qualification. As 
for the team actual average qualification, it re-
mains al-most the same at the values of threshold 
qualification from 0.4 to 0.55, and then it grows 
rapidly reducing the number of teams essentially 
and increasing the number of unemployed pro-
grammers. Table 1 provides detailed information 

T a b l e  1.  Partitioning of a set of 24 professional programmers into teams by GA on 16 technologies

Run Team qualification 
constraint

Number of teams 
(programmers)

Overall 
qualification

Team average 
qualification

Teams 
count Staff of teams

1 0.40 9 (22) 5.42 0.602

1–9 g1={6,7,15,17,24}, g2={11,20,23}, g3={1,3,5,14},
g4={8,19,21}, g5={18}, g6={16}, g7={22},
g8={2,12}, g9={10,13},

reserve {4,9}

2 0.45 8 (23) 5.05 0.631

1–8 g1={8,13,15,21,24}, g2={2,5,6,9,14}, g3={3,4,7},
g4={12,22}, g5={10,11}, g6={16,19},
g7={1,17,23}, g8={18}

reserve {20}

3 0.50 8 (23) 5.04 0.630

1–8 g1={4,11,17,20}, g2={3,5,14,19}, g3={7,9,13,22},
g4={1,12,15,24}, g5={2,6,21}, g6={18},
g7={8,23}, g8={16}

reserve {10}

4 0.55 8 (21) 5.01 0.626

1–8 g1={3,4,6,9,11,17}, g2={5,19,21,24}, g3={10,14},
g4={8,12,15}, g5={1,7}, g6={18},
g7={16}, g8={13,22}

reserve {2,20,23}

5 0.60 6 (22) 4.10 0.683
1–6 g1={2,4,7,9,14,16}, g2={3,6,10,13,17,21,24},

g3={12,22}, g4={1,5,8,23}, g5={11,15}, g6={18}
reserve {19,20}

6 0.65 5 (16) 3.48 0.696
1–5 g1={1,2,4,5,8,14,15}, g2={12,16,20}, g3={10,11},

g4={19,22,23}, g5={18}
reserve {3,6,7,9,13,17,21,24}

7 0.70 3 (13) 2.27 0.757
1–3 g1={2,9,10,11,13,14,22,23}, g2={7,12,15,16},

g3={18}
reserve {1,3,4,5,6,8,17,19, 20,21,24}

8 0.75 2 (6) 1.57 0.785
1–2 g1={7,10,11,12,15}, g2={18}

reserve {1,2,3,4,5,6,8,9,13,14,16,17,19,20, 21,22,23,24}
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on the number of programmers and on the staff of 
each workable team. The programmers included 
in a small team are usually more qualified on av-
erage over all technologies. The programmers in-
cluded in a large team are usually less qualified on 
aver-age or are highly qualified in restricted set of 
technologies.

GA has increased the overall teams’ qual-
ification within a single run of the algorithm by 
about 30 % against the best partitioning in the ini-
tial random population of chromosomes. It means 
the genetic operation are an effective facility of 
searching for an optimal solution.

In order to find an optimal partitioning of 
a large set of programmers, we develop a parallel 
version of GA. We use methods of work [12] to 
create an efficient parallel genetic algorithm for 
performing on parallel architectures.

Conclusion

Partitioning a set of professional programmers 
into workable teams is a hard combinatorial prob-
lem when the goal is to achieve the maximal over-
all technological competency while working on an 
IT project. The genetic algorithm we propose in 
the paper is capable of finding good solutions of 
the problem. Depending on the project constraints 
and on the set of participant candidates, the al-
gorithm finds a preferable number of teams, the 
optimal size and staff of each team, which maxi-
mize the overall teams’ qualification and minimize 
the number of skilled programmers not involved 
in the project. Experimental results obtained for 
programmers graduated from Belarus universi-
ties show that the proposed genetic operations 
efficiently recombine promising solutions and ex-
haustively scan the search space.
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ПРИХОЖИЙ A. А., ЖДАНОВСКИЙ A. А.

ГЕНЕТИЧЕСКИЙ АЛГОРИТМ  
ОПТИМИЗАЦИИ КВАЛИФИКАЦИИ ГРУПП ПРОГРАМИСТОВ

Аннотация.  Разбиение  множества  профессиональных  программистов  на  множество  команд,  когда 
программистский  проект  определяет  требования  к  компетенциям  в  различных  технологиях  и  инструментах 
программирования, представляет собой сложную комбинаторную проблему. В статье предлагается генетический 
алгоритм,  который  способен  находить  конкурентоспособные  и  высококачественные  решения  по  разбиению  за 
приемлемое  процессорное  время.  Алгоритм  вводит  хромосомы  таким  образом,  чтобы  распределить  каждого 
программиста в команду, определить состав команд и легко реконструировать команды в процессе оптимизации. 
Функция приспособленности характеризует каждую хромосому с точки зрения качества разбиения программистов. 
В  ней  учитывается  средняя  квалификация  команд  и  квалификация  лучших  представителей  команд  по  каждой  из 
технологий.  Функция  распознает  команды,  которые  удовлетворяют  всем  ограничениям  проекта  и  являются 
работоспособными с этой точки зрения. Она также способна распознавать команды, которые не соответствуют 
требованиям и не являются работоспособными. Алгоритм определяет генетические операции отбора, скрещивания 
и мутации таким образом, чтобы перемещать программистов из неработоспособных команд в работоспособные, 
увеличивать  количество  работоспособных  команд,  обмениваться  программистами  между  работоспособными 
командами,  повышать  компетентность  каждой  работоспособной  команды,  и,  таким  образом,  максимально 
увеличивать общую квалификацию команд. Экспериментальные результаты, полученные на выборке программистов, 
окончивших  вузы  Беларуси,  показывают  способность  генетического  алгоритма  находить  хорошие  решения  для 
разбиения, максимизировать компетенцию команд и минимизировать количество не работающих программистов.

Ключевые слова: оптимизация, генетический алгоритм, программист, команда, технология, квалификация. 
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