
СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2019

20 Управление техническими объектами

UDC 004.451.3

Y. I. KLIMIANKOU

TRANSLATION LOOKASIDE BUFFER MANAGEMENT
Belarusian State University of Informatics and Radioelectronics

This paper focuses on the Translation Lookaside Buffer (TLB) management as part of memory manage-
ment. TLB is an associative cache of the advanced processors, which reduces the overhead of the virtual to
physical address translations. We consider challenges related to the design of the TLB management subsys-
tem of the OS kernel on the example of the IA-32 platform and propose a simple model of complete and con-
sistent policy of TLB management. This model can be used as a foundation for memory management subsys-
tems design and verification.

Keywords: virtual memory, physical memory, memory management, TLB management.

Introduction
The virtual memory was made to cope with grow-

ing complexity of computer software. This technique
allows operating system to split software package exe-
cuting on computer into isolated parts called processes
and at the same time isolate OS kernel from applica-
tion software. Virtual memory is supported by most of
the widespread advanced processor architectures such
as IA-32 [1], ARM [2] and MIPS [3].

Memory Management Unit (MMU) handles ac-
cesses of processor to main memory. MMU performs
translation of virtual memory addresses into physical
memory addresses [4]. Such translation introduces sig-
nificant performance penalty. Translation Lookaside
Buffer (TLB) is a special MMU cache which was in-
troduced to reduce that performance loss.

This paper is focused on the TLB management as
part of the memory management performed by operat-
ing system kernel. Our goal is a consistent, efficient
and self-sufficient TLB management model atop of
which complete memory management subsystem can
be built. Developed model was designed with primary
focus on its application in second generation microker-
nels.

We consider TLB management as a bottom layer
of memory management [5]. Actual policy and/or
mechanism of memory allocation is expected to be im-
plemented on the basis of TLB management layer.
However, memory management in general is a differ-
ent topic and is not considered in this paper.

Gorman in [6] presented the overview of the TLB
management and its place in memory management on
the example of Linux kernel. However, this overview
was done in the context of monolithic kernels where
TLB management functionality tends to be smeared

between modules. In contrast, we propose concise
model suitable for true microkernels.

Translation Lookaside Buffer
TLB is a special component of the advanced pro-

cessors equipped with memory-management unit
(MMU), which allows to achieve benefits of paging. It
is located on the data link between processor core and
physical memory and serves as a cache for virtual to
physical addresses mappings (Figure 1). On architec-
tures with physically addressed memory caches TLB
precedes the cache on that data link. In contrast, on ar-
chitectures with virtually addressed memory caches
TLB follows the cache. In contrast to the regular CPU
caches, TLB is not coherent. Due to this operating sys-
tems are forced to synchronize TLBs in multiprocessor
systems explicitly. The majority of advanced proces-
sors that can be found in desktops, laptops, servers,
smartphones and other complex computation devices
include one or more TLBs as a part of the memory
management facilities providing virtual memory sup-
port.

The TLB is almost always implemented as an as-
sociative cache. It contains a set of slots, each of which
can store a pair consisting from virtual address and as-
sociated with it physical address. TLB performs per-
missions checks and replaces virtual address used by
CPU, by respective physical address used by memory
controller in each memory access request generated by
processor. Each such request can found TLB in two
states. In the first state, called hit, TLB contains a map-
ping for address specified in the request. In the second
state, called miss, TLB does not contain appropriate
address translation for the address specified in the re-
quest. To handle miss translation lookaside buffer per-

Управление техническими объектами 21

4, 2019 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА

forms costly page walk. It queries page tables stored in
main memory performing lookup of the translation re-
quested by operation that has triggered miss. Finally
mapping found in page tables is cached in TLB and
handling of the original memory operation is restarted.

The virtual and physical address spaces are split
into pages with the same fixed size. Every memory ad-
dress consists of two parts: page identifier and offset.
The job of MMU is to translate page identifier from the
form of the virtual page id to the form of the physical
page id (Figure 2). The page table is stored in main
memory and it tracks which physical memory page and
to which virtual memory page is mapped. In the case
of TLB miss the processor MMU is forced to perform
as many additional memory accesses as many levels in
the page tables hierarchy exist [1]. Thus, TLB miss
leads at least to the doubling of actual memory access-
es, and the more levels in the page tables hierarchy, the
more performance penalty. For example, on the
AMD64 TLB miss is forcing MMU to perform 3 addi-
tional memory accesses.

Translation Lookaside Buffer management
on the IA-32 platform

During the management of virtual address spaces
of processes executing in the system, as well as, ma-
nagement of kernel address space, operating system
should synchronize hardware and software views of
address space layout. This synchronization should be
performed by operating system kernel explicitly to
overcome unpredictability and indeterminacy related
to the TLB and force MMU to employ up to date trans-
lation rules. Note, that modification of page tables in
memory does not leads to automatic update of the
cached in TLB translation rules.

Translation lookaside buffer provides four kinds of
interfaces (Figure 3):

•	phy_address_t Translate(vrt_address_t va, attri-
butes_t operation_attributes) – performs a physical to
virtual address translation.

•	void Load(vrt_address_t va, phy_address_t pa,
attributes_t permissions) – loads translation rule from
page table into TLB.

•	void Drop(vrt_address_t va) – drops one of the
cached translation rules from the TLB.

•	void Reset(void) – resets all translation rules
cached in TLB.

Let’s consider management of TLB on the exam-
ple of IA-32 architecture. IA-32 architecture exploits
separate TLBs for data and instructions and for 4Kb
and 4Mb pages [3].

Figure 1. TLB

Figure 2. Address Translation

Figure 3. Abstract model of TLB interfaces

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2019

22 Управление техническими объектами

TLB designed to be as much automatic as possi-
ble. Most frequent operations (Load, Translate and
Drop) it performs without involvement of the operat-
ing system. Furthermore MMU does not export to the
OS interface to the Load and Translate operations. On
the other hand, TLB managemet can not be completely
automatic and OS kernel need to have some means of
TLB management to modify page tables and switch
between virtual address spaces safely. To fulfill that re-
quirement TLB exposes interface to the Drop and Re-
set operations to the OS kernel. Note that while Reset
operation can be triggered only by kernel, the Drop op-
eration can be requested by OS, as well as, by TLB
hardware itself in reply to overflow.

IA-32 Instruction Set Architecture exports two
TLB management related instructions. First of all, mov
CR3, reg, which primary purpose is to switch proces-
sor from one virtual address space to another. This in-
struction has a side effect of resetting of the entire con-
tent of TLB. In fact, pure Reset can be expressed by
pair of instructions mov reg, CR3 | mov CR3, reg.
When mov CR3, reg instruction provides a coarse-
grain control on the TLB, another instruction – invlpg
reg provides a means of fine-grain control and imple-
ments Drop operation which invalidates only one spec-
ified translation rule.

TLB management
Typical design of TLB management subsystem of

the OS kernel pursues the following objectives:
•	Assure predictability and consistency of the vir-

tual address space layout modifications and of the
memory access operations behavior.

•	Minimize amount of TLB misses.
•	Minimize amount of performed TLB manage-

ment operations.
The main objective of TLB management subsys-

tem of the OS is providing of consistent and predict-
able memory model for the rest of software executing
atop of operating system. From the kernel viewpoint
every modification of (write in) page table is a poten-
tial source of misalignment of virtual address space in
TLB and in page tables. Thus, each such operation
should be carefully checked either at design time or at
execution time and be accompanied by respective TLB
Drop if needed. Hence, TLB management subsystem
should encapsulate access to page tables and pass reads
unconditionally, but provide special processing for
writes (Figure 4). There are two optimization tricks
that can be applied on the writes.

First of all, it can be taken into the account that
virtual address space switch as a side effect leads to en-
tire TLB reset. That mean that there is not any benefit
from the explicit invalidation of translation rules relat-
ed not to the currently active virtual address space. All
such changes made in the context of virtual address

space A in the page tables of virtual address space B
can be transparently accumulated without explicit syn-
chronization with TLB, because all they will be en-
forced in batch by processor during the switching to
the virtual address space B. Taking into the account the
fact, that such changes can introduce any observable
effects only in the context of virtual address space B,
such lazy enforcement of translation rules modifica-
tions is completely safe from the point of view of con-
sistency and predictability.

Second trick relies on the known fact about TLB
implementation on IA-32 platform. Particularly, on the
fact that IA-32 TLB can cache only valid address
translations. Attempts to access a memory page that is
marked as not present leads to page fault without cach-
ing of respective page table entry. This feature leads to
the two TLB management subsystem design features.
On the one hand, any change in the page table entry
which transforms a page from present to not present
state must be accompanied by the TLB Drop of the re-
spective translation rule. But on the other hand, any
change in the page table entry which transforms a page
from not present to present state is safe, because it is
guaranteed that respective mapping is absent in TLB,
and consequent Load operation will capture the new
translation rule.

Simple TLB management model
The described above observations bring us to the

Simple TLB Management Model depicted on the Fi-
gure 5. Circles denote the state of page table entry and
its current value, while arrows denote transitions be-
tween states triggered by memory management opera-
tions on the page table entry. Dashed lines on this dia-
gram represent transitions between states of page table
entry for which Drop of respective TLB entry is redun-
dant and can be omitted without compromising of
memory image consistency. Solid lines represent tran-
sitions that is necessary to be complemented by Drop
operation to keep memory image consistent. It can be
noted that Drop is necessary only when page table en-
try is transformed from present state and when trans-
formation affects at least one TLB tracked bit in page
table entry. Take a note that on the example of IA-32
platform, the page table entry contains three bits [9–
11] which are ignored by TLB hardware, thus their

Figure 4. Architecture of TLB Management Subsystem

Управление техническими объектами 23

4, 2019 СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА

change does not affect the translations of virtual to
physical addresses.

This model is simple but provides a complete and
consistent TLB management policy which can serve as
a ground foundation for the design of memory man-
agement subsystem of the operating system kernel. In
particular, its application to the memory management
subsystem design leads to the optimization of kernel
code via avoiding of valueless condition checks and in-
validation’s of TLB entries, and at the same provides
a guarantee of memory layout consistency. Finally it
allows to abstract out the rest of the kernel from the
TLB architecture details by separation TLB manage-
ment into the distinct layer used by rest of the kernel
subsystems (see Figure 4). We argue that due to its
simplicity, minimality and the concise nature, applica-
tion of that model in the domain of true microkernels is
especially beneficial. Moreover, Simple TLB Manage-
ment Model could be used for the purposes formal ver-
ification of already existing kernels.

Simple TLB management model was used as
a ground model for implementation of M-M/S-CD
memory management subsystem for microkernel used

as a core component of experimental multikernel OS
[7].

Conclusions and future work
We have provided an overview of TLB, including

a description of its structure, properties, place, and role
in the computer system.

TLB requires special care from the operating sys-
tem kernel to provide consistent virtual memory layout
and deliver a maximum of efficiency. This paper high-
lights the main challenges related to TLB management,
including their description, proposed solutions, and op-
timization tricks using the example of the IA-32 plat-
form.

We have proposed a simple TLB management
model that provides a concise and consistent policy for
TLB management and which relies on the availability
of means of fine-grained resetting of TLB entries. The
introduced model focuses on modifications of the cur-
rently active virtual address space. Alterations of exter-
nal address spaces do not require explicit clean up of
TLB buffer, because the virtual address space switch
performs a reset of TLB as a side effect.

Figure 5: Simple TLB Management Model

REFERENCES
1. Intel Corporation. IA-32 Intel Architecture Software Developer’s Manual. Volume 3: System Programming Guide.

245472–007. 2002.
2. Seal D. ARM Architecture Reference Manual. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd

ed., 2000. ISBN 0201737191.
3. MIPS Technologies. MIPS32 Architecture for Programmers Volume III: The MIPS32 Privileged Resource Architec-

ture, 0.95 ed., 2001.
4. Bryant R., O’Hallaron D. Computer systems: a programmer’s perspective. Prentice Hall, 2003. ISBN 9780130340740.
5. Mosberger D., Eranian S. IA-64 Linux Kernel: Design and Implementation. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 2001. ISBN 0130610143.
6. Gorman M. Understanding the Linux Virtual Memory Manager. Prentice Hall PTR, Upper Saddle River, NJ, USA,

2004. ISBN 0131453483.
7. Klimiankou Y. M-M/S-CD Memory Management: Conceptual and System Models – In: 2017 Ivannikov ISPRAS

Open Conference (ISPRAS), 2017 – pp. 51–57.

 Поступила После доработки Принята к печати
 08.09.2019 08.11.2019 01.12.2019

СИСТЕМНЫЙ АНАЛИЗ И ПРИКЛАДНАЯ ИНФОРМАТИКА 4, 2019

24 Управление техническими объектами

КЛИМЕНКОВ Е. И.

УПРАВЛЕНИЕ БУФЕРОМ АССОЦИАТИВНОЙ ТРАНСЛЯЦИИ
Белорусский государственный университет информатики и радиоэлектроники

В данной статье основное внимание уделяется управлению Буфером Ассоциативной Трансляции (БАТ) как
одному из основных разделов управления памятью в компьютерных системах. БАТ является ассоциативным кешем,
включаемым в состав развитых микропроцессоров, для сокращения накладных расходов на отображение адресов
виртуального адресного пространства на адреса физического адресного пространства. В предлагаемой работе
рассматриваются вопросы, связанные с проектированием подсистемы управления БАТ в ядрах операционных систем
на примере платформы IA-32, и предлагается простая модель полной и целостной политики управления БАТ.
Предлагаемая модель может быть применена как в качестве основы для проектирования подсистем управления
памятью в ядрах операционных систем, так и для верификации таких подсистем в уже существующих ядрах ОС.

Ключевые слова: виртуальная память, физическая память, управление памятью, управление буфером ассоциа-
тивной трансляции.

Klimiankou Y. I. received the Software Engineer and the MSc degree in the field of
«Computers, Computer Systems, and Network Software» from the Belorussian State Uni-
versity of Informatics and radioelectronics in 2010 and 2011 respectively. He is currently
working toward a PhD degree in the field of «Computers, Computer Systems, and Net-
work Software» by researching the operating systems design and implementation. His re-
search interests include operating systems, virtualization technologies, virtual execution
environments, compilation, and optimization technologies. E-mail: klimenkov@bsuir.by.

