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Caches are intermediate level between fast CPU and slow main memory. It aims to store copies of frequently used
data and to reduce the access time to the main memory. Caches are capable of exploiting temporal and spatial localities
during program execution. When the processor accesses memory, the cache behavior depends on if the data is in cache:
a cache hit occurs if it is, and, a cache miss occurs, otherwise. In the last case, the cache may have to evict other data.
The misses produce processor stalls and slow down the computations. The replacement policy chooses a data to evict,
trying to predict the future accesses to memory. The hit and miss rate depends on the cache type: direct mapped, set
associative and fully associative cache. The least recently used replacement policy serves the sets. The miss rate strong-
ly depends on the executed algorithm. The all pairs shortest paths algorithms solve many practical problems, and it is
important to know what algorithm and what cache type match best. This paper presents a technique of simulating the
direct mapped, k-way associative and fully associative cache during the algorithm execution, to measure the frequency
of read data to cache and write data to memory operations. We have measured the frequencies versus the cache size, the
data block size, the amount of processed data, the type of cache, and the type of algorithm. After comparing the basic
and blocked Floyd-Warshall algorithms, we conclude that the blocked algorithm well localizes data accesses within one
block, but it does not localize data dependencies among blocks. The direct mapped cache significantly loses the asso-
ciative cache; we can improve its performance by appropriate mapping virtual addresses to physical locations.

Keywords: hierarchical memory, direct mapped cache, k-way associative cache, fully associative cache, all pairs shortest

paths algorithms, performance, simulation.

Introduction

Caches are intermediate level between CPU
and main memory, which reduces the average
time and energy to access data stored in the main
memory. Caches keep copies of data from fre-
quently used locations of the memory. Most mod-
ern CPUs have three caches [1-3]: an instruction
cache, a data cache, and a translation lookaside
buffer. The data cache is usually a hierarchy of
some cache levels. In a multi-core processor, the
lower levels of cache hierarchy are split among
cores, and the higher cache levels act as a com-
mon repository of data for all cores.

The data is transferred between the main
memory and the cache in blocks (lines). When
the processor reads or writes a memory location,
the cache checks if the line is in cache. If the
cache reads a line, it creates a cache entry, which
includes the copied data and the memory location

(called a tag). If the location is in the cache, a
cache hit has occurred; otherwise, a cache miss
has occurred. As CPUs are much faster than the
memory, stalls due to the cache misses slow down
the computation significantly. The key step in im-
proving the cache performance is reducing the
miss rate.

To prepare a cache slot on a cache miss to read
the requested entry, the cache may have to evict
one of the existing entries. The replacement
policy chooses an entry to evict. It tries to predict
the future accesses to the entries in cache. One of
the most popular and efficient replacement poli-
cies is LRU that replaces the least recently used
entry. At some point, the cache must write the up-
dated data to memory. Two write policies can do
this: the first one known as “write-through cache”
performs the write to memory with every write to
cache; the second one known as “write- back
cache” tracks by means of a dirty bit which loca-
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tions have to be written (it writes the dirty data to
memory only when replaces it with other data).

In the recent times, the cache performance
measurements help in bridging the gap in the
speed of the processor and memory in high-per-
formance computing systems. The cache perfor-
mance significantly depends on what algorithm
the processor runs. This paper investigates how
the type (direct mapped, k- way or fully associa-
tive) of cache [1] influences the algorithm run-
time, and how we can modify the algorithms to
obtain the increased performance of the cache (to
do this we need to obtain the reduced number of
cache read and write operations). In this work, we
focus on the simulation and analysis of sequential
algorithms in relation to properties of various
cache types; therefore, the emphasis of the paper
is on the one-core-processor-cache-memory ar-
chitecture.

Organization of caches

In cache, there are three placement options for
where data can go: direct-mapped, fully associa-
tive, and set-associative. The k-way associative
cache rep- resents a cache organization in a most
general form. Let Lsize be the number of bytes
per memory line, Csize is the number of lines in
cache, line is the line index in memory, Nset be
the number of sets in cache, and Kway be the
number of cache slots per cache set. The effective
memory address is split into the tag (memory lo-
cation), the index (cache set), and the line offset:

line = address | Lsize,
offset = address mod Lsize,
Nset = Csize | Kway,

tag = line / Nset,
index = line mod Nset.
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Figure 1. Mapping memory lines to cache slots in 2-way as-
sociative cache

The cache entry has the structure as follows:
the tag, the data block, and the flag bits (valid and
dirty). The k-way cache organization (it maps
each memory line to a subset of cache slots) is set
up to exploit temporal (if accessed, will access
again soon) and spatial (if accessed, will access
others around it) lo-cality. Figure 1 shows the
mechanism of mapping memory lines to cache
slots at Nset =2 and Kway = 2. Lines 0,2, 4 ... of
memory can be assigned to any of two ways of
set 0, and lines 1, 3, 5... can be assigned to ways
of'set 1.

If Nset = 1, the cache becomes the fully asso-
ciative cache: the incoming fag must be compared
with all cache fags as the cache maps each memo-
ry line to any cache slot. If Kway = 1, the cache
becomes the direct mapped cache: the incoming
address tag must be compared with only one
cache tag as the cache maps each memory line to
exactly one cache slot.

The method by Maruyama (Figure 2) imple-
ments the real LRU for each of Nset cache sets. It
keeps one matrix [KwayxKway] of bits for each
set. When line i of a set accessed, the method per-
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Figure 2. Maruyama method for real LRU on one set
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forms steps as follows: (1) set row i to all ones;
(2) set column i to all zeroes; (3) evicted line cor-
responds to all zero row. For example, line ac-
cesses are made in the order 2-1-0-3-1-2. Figures
2a-2f show six states of the bit matrix that indi-
cate by their zero rows the evicted slots: {0, 1,
33, {0, 3}, {3}, {2}, {2}, {0}. In our work, we
implement the “write-back cache” policy [1].

Floyd—Warshall algorithm

Let’s consider a directed graph G = (V, E),
where V'=1{0, ..., N-1} and £  {(i,)) |i,j € V}
are the vertex and edge sets, respectively. A func-
tion w: E — R assigns the weight w;ito edge (i, j) €
E. Matrix W rep- resents the function, in which
Wi, j)=0 if i=j, W@ j)=wyif(i,)) € E, and
Wi, j)=wif(i,j) ¢ E.

The all-pairs shortest paths problem is formu-
lated as to find the paths of the shortest length for
all pairs of vertices i, j € V. Algorithm 1 known as
Floyd—Warshall (FW) algorithm [4], uses a matrix
D that describes the all pairs shortest paths lengths.
The loop iterations on k produce the states D, ...,
DF, ..., DN of D according to the recurrent equa-
tion as follows:

Algorithm 1: Floyd—Warshall (FW)

Input: A number N of graph vertices
Input: A matrix W of graph edge weights
Output: A matrix D of all-pairs shortest paths lengths
D«W
fork< OtoN—1do
fori< OtoN—1do
forj < O0toN-1do
sum < Dik +ij
if Dij > sum then Dij < sum;
return D

(1

State matrix D° = W, and state matrix DV de-
scribes the final shortest paths lengths. The com-
putational complexity of algorithm FW is O(N?).
For large matrices, algorithm FW can consume a
lot of execution time, the significant part of which
is due to the operations in the hierarchical me-
mory.

k . k-1 k k
D,-j = mm{D,-j , Dy + D,g}

Blocked Floyd—Warshall algorithm
Let the NxN matrix D be blocked into a MxM
matrix of smaller matrices Bjj, 0 </, j > B, where

B = N/ M. Algorithm 2 known as the blocked
Floyd—Warshall (BFW) algorithm [5-6], itera-

tively calls a function Chlock(B', B, B) of recal-
culating block B! over blocks B> and B3 (Algo-
rithm 3).

Algorithm 2: Blocked Floyd—Warshall (BFW)

Input: A number N of graph vertices Input: A matrix
W of graph edge weights Input: A size B of block
Output: A matrix D of lengths of all pairs shortest paths
M < N/ B DIMxM] <~ W[NxN]
for m <— 0 to M—1 do

Cblock (Bm,m, Bm,m, Bm,m) /D
fori< OtoM—1do
if i # m then
Cblock (Bi,m, Bi,m, Bm,m) Ic

Cblock (Bm, i, Bm,m, Bm,i)
fori< 0toA -1
do

if i # m then
forj <« OtoM—1do
if j # m then
Cblock (Bi,j, Bi,m, Bm,j) // U
return D

Algorithm 3: Recalculation of block

Input: B — size of block
Input: B' — first input
block Input: B> — sec-
ond input block Input:
B — third input block
Output: B! — recalculated block
for k<~ 0to B-1do
fori< OtoB-1do
forj < OtoB-1do
sum < B> + B?
if B! > sum then B' < sum;
return B!

Figure 3 illustrates the behavior of BFW on
the matrix [4x4] of bocks. In the first iteration,
BFW recalculates diagonal (D) block Boo, recal-
culates blocks of the cross (C) with the center in
Boo, and then recalculates other blocks (U). In the
second iteration, the cross moves to block Bii, in
the third iteration it moves to B2, and so on.

The computational complexity of BFW is the
same as that of FW, but in contrast to FW, BFW
can localize data and computations within the
block, which is very important for caches, and it
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Figure 3. Illustration of blocked Floyd-Warshall algorithm
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is a source of parallel computations at the block
level [6].

Simulation of algorithms FW and BFW
on caches

Simulation is an efficient technique to mea-
sure dynamic parameters of a complex system
represented as a computer program [7-8] at the
behavioral level.

Algorithm 4 describes the cache-based simu-
lation of algorithm FW. It aims at measuring the
number of read and write operations in the cache
occurred during execution of FW, and extends Al-
gorithm 1 in the following points:

e initializing the cache model by zeroing the
line read and write counters, and initializing ar-
rays depending on the cache type,

e calculating the memory line number of Li,
Lijand L;depending on the elements of matrix D,

e simulating the read-write operations and the
line miss over function MemoryAccess(L) that is
implemented depending on the cache type,

e simulating the write of a line to memory.

We organize the cache-based simulation of al-
gorithm BFW in a similar way. Since the compu-
ter memory is inherently linear, algorithm FW
uses the row-major memory layout of matrix D.
Algorithm BFW uses the block-major memory
layout of whole matrix D, and uses the row-major
layout of each block. For the line representation
of memory, Table 1 reports the number of lines in
one block, in the whole matrix D, and in the cache
depending on the line size. The modules of cache
run mostly in parallel. At the same time, our cache
simulation program operates sequentially. There-
fore, the model of cache simulation slightly dif-
fers from the real cache model.

Table 1. Number of lines in block [8x8], in matrix
D[64x64], and the number of slots in cache of 1024 byte
vs. line size

Line size, bit 8 16 32 64 128 | 256
Block lines 32 16 8 4 2 1
Matrix lines 2048 | 1024 | 512 | 256 | 128 | 64
Cache slots 128 64 32 16 8 4

Output: A matrix D of lengths of all pairs shortest paths
Output: A number read of line reads in cache
Output: A number write of line writes to memory
< Initialization of cache model >
D« W
for k < 0 to N-1 do
fori < 0 to N-1 do
Lik < (ixN + k) / Lsize
for i « 0to N-1do
k <« (kxN + )/ Lsize
< (ixN +j)/ Lsize
]\/HemoryAccess le
MemoryAccess (L
MemoryAccess L1j5
sum <— Dik +Dk
if Dij > sum then
Dij < sum;
<Simulating write of line to memory>

<Destruction of cache model>
return D, read, write

Simulation of direct mapped cache

We model the direct mapped cache at abstract
level using the variables as follows:
e Tagis an array of size Csize, which elements
are addresses of memory lines read in cache.
e DirtyC is an array of size Csize, which ele-
ments are flags indicating the cache lines updated.
Initialization of direct mapped cache:
read < 0; write < 0;
for i <— 0 to Csize-1 do
Tagli] < -1
DirtyCli] < false
Simulating the write of line to memory:
DirtyC[Lij % Csize] < true
Destruction of the cache model:
for i < 0 to Csize-1 do
if DirtyC[i] then ++ write
Algorithm 5 implements the function Memo-
ryAccess(L) and models a cache miss. It first cal-
culates the value of index and tag for line L. Vari-
able index indicates the cache slot that holds L.
When L is not in cache, Tag[index] # tag. If the
current data of cache slot index is dirty, the algo-
rithm writes the data to line 7ag[index] x Csize +
index and assigns false to DirtyClindex]. Then it
reads line L in cache and as- signs the fag of L to
Taglindex].

Algorithm 4: Simulation of algorithm FW for cache

Algorithm 5: Simulation of memory access in direct
mapped cache

Input: A number N of vertices in graph
Input: A matrix ¥ of graph edge weights
Input: A size Lsize in words of cache line
Input: A number Csize of lines in cache
Input: Variables of a cache model

Input: A line L of memory

Input: A number Csize of lines in cache

InOut: An array 7ag of memory line tags that are in cache
InOut: An array DirtyC of updated cache lines

InOut: A number read of memory line reads in cache
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InOut: A number write of data-in-slot writes to memory
tag < L/ Csize index <— L % Csize
if Tag[index] # tag then
if DirtyClindex] then
++ write
DirtyClindex)] < false
++ read Tag[index] < tag;

Simulation of k-way associative cache

Let Dsize be the number of lines allocated for
matrix D. We model the k-way associative cache
at abstract level using the variables as follows:

e [nCache is an array of size Dsize, which ele-
ments are flags indicating D-matrix (memory) li-
nes read in cache,

e DirtyM is an array of size Dsize, which Boo-
lean elements indicate the memory lines dirty in
cache,

e Jalid is an array of size Csize, which Bool-
ean elements indicate the valid data in cache slots,

e BitsL is an array of size Csize, which ele-
ments represent the rows of K?>-matrices of bits as-
signed to the cache sets.

Initialization of k-way associative cache:

read < 0 write < 0
for j < 0 to Dsize-1 do
InCachelj] < false DirtyM[j] < false
for i <— 0 to Csize-1 do
Tagli] < -1 Valid[i] < false BitsL[i] < 0
Simulating the write of line to memory:
DirtyM[Lij] « true.

Algorithm 6 describes the procedure of simu-
lating the cache miss in the A-way associative
cache. It calculates tag and index of line L and im-
plements the Maruyama and write-back methods,
which do not write the dirty data to memory until
necessary. Variable displ indicates the first slot of
the cache set that accommodates line L. When the
first loop breaks, s/ indicates either a free cache slot
for reading line L, or indicates a cache slot that
already holds the data of L. Variable u/ indicates a
bit-matrix row in the array BitsL, which takes the
value of mask[s/] that is a sequence of length Kway
of ones except element s/ that is zero. This value
also updates all bit-matrix rows of the set accor-
ding to the Maruyama method, by means of Boo-
lean operation and on bit-vectors. If line L is not
in cache, Lr denotes a line that is currently in the
selected slot ul. If the slot holds valid-dirty data,
the algorithm increments the value of counter
write, resets the dirty bit, and marks line Lr as
out of cache. After that, it marks line L as read in

the cache, and increments the value of counter
read.

Algorithm 6: Simulation of memory access in k-way asso-
ciative cache

Input: A line L of memory
Input: A number Nset of sets in cache
Input: A number Kway of slots in one set
Input: An array BitsS of sample bit-vectors
InOut: An array /nCache of flags indicating read memory
lines
InOut: An array DirtyM of flags indicating updated memo-
ry lines
InOut: An array Valid of flags indicating valid data in
cache slots
InOut: An array 7ag of memory line tags in cache
InOut: A two dimensional array BitsL is K> matrix of bits
for a set
InOut: A number read of memory line loads in cache
InOut: A number write of data-in-slot writes to memory
tag < L/ Nset index <— L % Nset displ < index x Kway
for s/ < 0 to Kway —1 do
if InCache[L] then
if Tag[displ + sl] = tag then break
else
if BitsL[displ + s/] = 0 then break
ul < displ + sl
BitsL[ul] < mask[sl]
for / < 0 to Kway-1 do
t <« displ +1
BitsL[t] < BitsL[t] bitand mask{[sl]
if not /nCache[L] then
if Valid[ul] then
Lr < Tag[ul] x Nset + index
if DirtyM[Lr] then
++write DirtyM[Lr] < false
InCache[Lr] < false
+t+read Taglul] < tag
InCache[L] < true Valid[ul] < true

Simulation of fully associative cache

For fully associative cache, we simulate the
replacement strategy LRU that serves all cache
slots. We implement LRU in a way different to the
Maruyama method. The simulation procedure works
at abstract level using the Tag, Valid and DirtyC
arrays, and additionally using the variables as fol-
lows:

e Time is a counter of time points,

e Slot is an array of size Dsize, which elements
are cache slot indices assigned to lines,

e Rtime is an array of size Csize, which elements
are time points of referring to lines held in cache.

Fully associative cache initialization:

read < 0; write < 0; Time < 0,
for j <— 0 to Dsize-1 do
Slot[j] < -1
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for i < 0 to Csize-1 do
Tagl[i] < -1 Rtime[i] < -1
Valid[i] < false DirtyCl[i] < false

Simulating the write of line to memory:
DirtyC[Slot[Lij]] < true

Algorithm 7 describes the procedure of simu-
lating the memory line miss in the fully associa-
tive cache. Variable s/ indicates the cache slot that
holds the memory line L. If s/ # —1, line L is in
cache, variable Rtime[s/] gets the value of Time,
and the algorithm returns the control. Otherwise,
in a loop it searches for a slot /oc of cache for ac-
commodating the line L. The slot either contains a
garbage or is a least recently used one.

Algorithm 7: Simulation of memory access in fully asso-
ciative cache

Input: A line L of memory
Input: A number Csize of lines in cache
InOut: A counter Time
InOut: An array Tag of memory line tags that are in cache
InOut: An array Valid of flags indicating valid data in
cache slots
InOut: An array DirtyC of slots with updated data
InOut: An array Slot of cache slots assigned to memory
lines
InOut: An array Rtime of time points of reference to data
in slots
InOut: A number read of memory line loads in cache
InOut: A number write of data-in-slot writes to memory
sl <« Slot[L] ++Time
if s/ # -1 then
Rtimel[sl] < Time return
tmin < Time
for ¢/ «<— 0 to Csize -1 do

if not Valid[cl] then
loc < cl break
if tmin > Rtime[cl] then

tmin < Rtime|[cl] loc < cl
if Valid[loc] then
if DirtyC[loc] then
++write DirtyClloc] < false
Slot[Tag[loc]] < -1
Tag[loc] < L Rtime[loc] <— Time Slot[L] < loc ++read

If slot loc contains a valid-dirty data, the algo-
rithm increments the counter read, resets the flag
DirtyClloc], and sets the value of Slot| Tag[loc]]
to —1. Finally, it reads line L in cache, sets the line
reference time to Time, and fixes the cache slot of
line L to be loc. The procedures of simulating FW
and BFW in- crement the value of counter Time.

Experimental results

This section compares FW and BFW algo-
rithms, regarding the number of read and write op-

erations in each of three cache types: direct
mapped, k-way associative, and fully associative. It
also studies the algorithm features while increasing
the size of matrix D. We performed experiments on
the same for algorithms and for caches randomly
generated weighted complete graphs at various
line, block and graph size. Comparison of the algo-
rithms and caches for var- ious line size. Matrix D
of 64x64 elements of 4 byte each requires totally
16384 byte of memory. One block of 8x8 elements
of 4 byte each occupies 256 byte of memory. Ma-
trix D consists of 8x8 blocks.

In the experiments, we use caches of two si-
zes 1024 and 512 byte. The first size cache can
hold four blocks, which is larger than three input
blocks of function Chlock. The second size cache
can hold only two blocks, and cannot accommo-
date all data the function Chlock needs. That is
why this size is flaky and can produce many read
operations. The line size varies in the range from
8 to 256 byte, therefore the caches can accommo-
date from 2 to 128 lines.

Figure 4 presents results for read operations in
the direct mapped cache. The larger the line size
the lower the number of read operations for FW
and the larger the number of read operations for
BFW. At a low line size, BFW has a minimum of
reads (111767), but it loses to FW significantly at
the high line size.

Figure 5 reports results for the 2-way associative
cache. The behavior of curves is very similar to that
in Figure 4. A distinction is FW yields fewer read
operations against BFW. For 4-way associative
cache, the situation has dramatically changed (Fi-
gure 6). BFW overcomes FW at any line size, hav-
ing a minimum of the line read operations (959).

Figure 7 presents results for the fully associa-
tive cache. FW at the line size of 512 and 1024,
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0
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——-FW-512 —e—FW-1024 - @ BAWS512 @ BFW-1024

Figure 4. Number of line reads in direct mapped cache vs.

line size for FW and BFW and for cache size of 512 and
1024 byte
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Figure 5. Number of line reads in 2-way associative cache
vs. line size for FW and BFW and for cache of 512 and 1024
byte
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Figure 7. Number of line reads in fully associative cache vs.
line size for FW and BFW and for cache of 512 and 1024
byte
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Figure 9. Number of line write operations in 2-way associa-
tive cache vs. line size

and BFW at the line size of 1024 have given the
results that are very close to that obtained for 4-way
associative cache. The results distinct only for
BFW at the line size of 512. This is due to the 512
byte cache cannot fit three blocks. We can conclude
that k-way associative cache approaches to fully
associative cache very rapidly with increasing k.
Now we compare the algorithms and caches
regarding write operations on dirty lines. Figures
8—11 show the number of write operations versus
the line size for two algorithms and three caches.
In all caches, the number decreases for FW. BFW
gives a larger number of write operations for the
direct mapped and for the 2-way associative cache.
For the 4-way and fully associative cache, the
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200 250
—o—-FW-512 —@—FW-1024 ... @ BAN512  ---g--- BFW-1024

Figure 6. Number of line reads in 4-way associative cache
vs. line size for FW and BFW and for cache of 512 and 1024
byte
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Figure 8. Number of line write operations in direct mapped
cache vs. line size
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Figure 10. Number of line write operations in 4-way asso-
ciative cache vs. line size

number of write operations falls, and the gain of
BFW over FW is significant.

Comparison of FW and BFW while scaling
the problem size. We explore the fully associative
cache to find out how the increase in the size of
matrix D influences the features of FW and BFW.
For the ma- trix size from 4 to 36 times larger to
the cache size, the reduction in number of line
reads produced by BFW slightly exceeds 4 times
against FW (Figure 12). When the matrix size
grows from 64 to 121 times, the reduction reaches
8.79 times. For larger matrix size when the ma-
trix’s row size is equal to the size of three blocks,
the reduction rapidly falls to 1.0, which means
BFW has no advantages to FW regarding the us-
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Figure 14 - Number of line write operations in fully asso-
ciative cache vs. line size

age of caches for solving very large size prob-
lems. We can explain this as BFW localizes ac-
cesses to lines within one block, but it does not
localize data dependencies among blocks.

The reduction in the number of write operations
in BFW against FW monotonically falls from 6.22
down to 1.45 times when the matrix size grows from
4 to 256 times against the cache size (Figure 12).
This is a significant advantage of BFW.

Conclusion

We have developed the abstract-level simula-
tion technique and tool, which allow the measure-
ment of performance parameters of various type

—eo—load —-9—-store

Figure 12. Reduction in number of line reads and writes,
given by BFW against FW (times) for block size of 256
byte, cache size of 1024 byte, and line size of 128 byte vs.
matrix size in times to cache size
of caches during execution of important algo-
rithms. These help us in the comparison of caches
and in the comparison of alternative algorithmic
implementations for solving the same problem. In
particular, we can conclude that the direct mapped
cache significantly loses to the k~-way and fully as-
sociative cache with respect to the number of read
and write operations executed while solving the
all pairs shortest paths problem. We also conclude
that the blocked Floyd—Warshall algorithm over-
comes the basic Floyd—Warshall algorithm in the
efficiency of cache operation, but the blocked al-
gorithm needs to be improved for very large
graphs.
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MOAEAMPOBAHUE K3LWI MPAMOIo OTOBPAXXEHMA U ACCOLUMATUBHbBIX
K3ll HA AATOPUTMAX MOUCKA KPATYAULLUX MYTEA B FPAGE

Kow senaemea npomedxcymounvim ypogHem mexcoy OblCmpbiM NPOYeccopoM U MeOeHHOl OCHO8HOU namamuio. O
npeoHasHaven O XPaHeHus KONUL Yacmo UCNONbIVEMbIX OAHHLIX U COKPAUEHUs 8peMent OOCMYNA K OCHOBHOU NAMAMU.
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18 CucmemHblil aHanu3

Kot cnocoben ucnonvsoeams epementyio u npoCmpancmeeHHylo 10KaIbHOCMb OAHHBIX 80 6DEMs BbINOIHEHUS NPOSPAMMDbL.
Koeoa npoyeccop obpawaemca k namsamu, nogedenue Koui 3asUcum om mozo, Haxo0amcs au OaHHble 8 Hem: NONAoaHue 6
KOUL NPOUCXOOUM, eciu OaHHble Mam, 6 NPOMUBHOM CIyude, UMeen Mecmo npomax k. B nocieonem ciyuae kow modscem
nompebosamucs yoanums opyeue Oaumwie. IIpomaxu npusoosm K OCMAHOBKE NpOYeccopd u 3amMeoNaom GbIYUCTEHUS.
Cmpameeus 3amenvl bloupaem oanmvie 07 YOaieHusl, NblMmasico npeockazames oyoywue obpawenus k navsmu. acmoma
NONAOAHULL U NPOMAXOE 3ABUCUIN OM MUNA KIUL NPAMO2O CONOCMABILEHUS, MHONCECMBEHHO-ACCOYUAMUBHBIL U NOTHOCTNBIO
accoyuamusuviii kKout. Cmpamezus yoanenus Haumenee HeOUBHO UCNONb30OBAHHBIX OAHHBIX OOCIYHCUBAEN MHONCECMBA
CI0MoB. Yposenb Npomaxos CUulbHO 3aBUCUI 0Nl BbLINOTHAEMO20 AN2OPUMMA. ANOPUMMbL NOUCKA Kpamuamuiux nymet
MednHcOy 6cemMu napamiu epuut 2pada pewaiom MHozue npaKmuyeckue 3a0aui, U aiCHO 3HAMb, KAKOU An20pUmM u Kaxoul
mun Ko iyyuie nooxoosm opye opyey. B amoii cmamee npedcmasnen memoo mMoOenuposanis Kaul npsmo2o omoopasicenus,
k-xkananvroeo accoyuamusnozo u NOTHOCHBIO ACCOYUATNUBHO20 KIUL 60 6PEMS 6bINOIHEHUS ANOPUMMA, O USMEPEHUs
4acmomul YmeHusi OGHHLIX 6 KUl U 3aNUCU OAHHBIX 6 NAMAMb. Mol usmepunu vacmomsl 6 3a6UCUMOCIIU OM PASMEPA KU,
pasmepa O10Ka OaHHbIX, 00beMa 00PAdOMANHBIX OAHHBIX, MUnA Kaw u muna aieopumma. Ilocne cpasnenus OCHO8HO20 U
onounozo ancopummos Duoinda-Yopwennia, mvl npuwaU K 661800y, 4mo OIOUHbII AIOPUMM XOPOULO JIOKATU3Yem OOCMYn K
OaHHBIM BHYMPU 00HO20 ONOKA, HO He JIOKANU3Yem 3a8UCUMOCU OAHHLIX Mexcoy Onoxkamu. Kaw npsamozo omobpadicenus
SHAUUMENLHO YCIYNAen ACCOYUAMUBHBIM KIUL, MbL MONCEM YILYHUUNNb €20 NPOUZE00UMENbHOCHb NYIMeM COOMBEMCMBYIOUe20
0MobpadtceHus BUPMYAlbHbIX A0Pecos Ha GusuyecKue aopeca NAMAmuU.

Knrwuesvie crnosa: uepapxudeckas namsnio, Koul npiaimoco 0m06paofceﬁuz, k-xananvholil accouuamu@ﬂblﬁ KoWt, NOJIHO-
Ccmbsio accouuamueﬂblzi Kowt, 3a0aua noucka Kpamuaﬁmux nymeﬁ, aneopummbl NOUCKA, npou3@0t)ume}lbuocmb, umumayuor-
Hoe MO@@JIMPOBGHM@.
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