26

.VnpaeﬂeHue mexHu4deckumu obsekxmamu

UDK 623.7

N. N. AREFYEV

FILTER KALMAN FOR SOLVING THE PROBLEM
OF COORDINATES UAV

Belarusian National Technical University

Unmanned aerial vehicles (UAVs) are increasingly used in military and scientific research. Some miniaturized
UAVs rely entirely on the global positioning system (GPS) for navigation. GPS is vulnerable to accidental or deliberate
interference that can cause it to fail. It is not unusual, even in a benign environment, for a GPS outage to occur for pe-
riods of seconds to minutes. For UAVs relying solely on GPS for navigation such an event can be catastrophic. This
article proposes an extended Kalman filter approach to estimate the location of a UAV when its GPS connection is lost,
using inter-UAV distance measurements Increasing the accuracy of coordinate’s determination is one of the most cru-
cial tasks of the modern UAV navigation. This task can be solved by using different variants of integration of navigation
systems. One of the modern variants of integration is the combination of GPS/GLONASS-navigation with the extended
Kalman filter, which estimates the accuracy recursively with the help of incomplete and noisy measurements. Currently
different variations of extended Kalman filter exist and are under development, which include various number of vari-
able states [1]. This article will show the utilization efficiency of extended Kalman filter in modern developments.

Keywords: Kalman filter, GPS, coordinates UAV, mathematical modeling, aerial vehicle, visual odometry, projective ge-
ometry, control, navigation, integration.

Theory analysis

The integration of observation channels in con-
trol systems of objects subjected to perturbations
and measurement errors of the motion is based on
on the observations control theory started in the
early 1960s. The first works on this topic were
based on the simple Kalman filter property, namely:
the possibility of determining the root-mean-square
estimation error in advance, without observations,
by solving the Riccati equation for the error covari-
ance matrix [2]. The development of this method-
ology allowed solving problems with a combina-
tion of discrete and continuous observations for
stochastic systems of discrete-continuous type. At
the same time, methods were developed for solving
problems with constraints imposed on the compo-
sition of observations, temporal and energy con-
straints both on separate channels and on aggre-
gate. For a wide class of problems with convex
structure, necessary and sufficient conditions for
optimality were obtained, both in the form of dy-
namic programming equations and the generalized
maximum principle, which opens the possibility of
a numerical solution. The tasks of integrating sur-
veillance and control systems for UAVs open a new
wide field of application of the observation control

methods, especially when performing autonomous
flight tasks. One of the most important problems is
the detection of the erroneous operation of individ-
ual observation subsystems, in which the solution
of navigational tasks should be redistributed or
transferred to backup subsystems or other systems
operating on other physical principles [3].

A typical example: navigation through satel-
lite channels such as global positioning system
(GPS), which is quite reliable in simple flight con-
ditions, but in a complex terrain (mountains,
gorges), it is necessary to use methods to deter-
mine your position with the help of other systems
based, for example, on landmarks observed either
with optoelectronic cameras, or radar.

Here the serious problem of converting the
signals of these systems into data suitable for nav-
igation arises. The human-operator copes with this
task on the basis of training. That is the serious
problem in computer vision area and it is one of
the mainstream in the UAV autonomous flight.
Meanwhile, the prospects for creating artificial in-
telligence systems of this level for UAV applica-
tions are still far from reality.

At the same time, the implementation of sim-
ple flight tasks, such as either access to the aerial
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survey area or tracking the reference trajectory
the organization of data transfer in conditions of
limited time and energy storage and even landing,
are quite accessible for performing UAVs in the
autonomous mode with reliable navigation aids.

Unmanned aerial, land-based and underwa-
ter-based vehicles that perform the autonomous
missions use, as a rule, an on-board navigation sys-
tem supplemented by sensors of various physical
nature. At the same time, unlike remote control
systems in which these sensors present information
in the form as operator-friendly as possible, the
measurement results should be converted into the
input signals of the control system, which requires
other approaches. This is especially evident in the
example of an optical or optoelectronic surveillance
system, whose purpose in remote control mode is
to provide the operator with the best possible im-
age of the surrounding terrain. At the same time, in
an autonomous flight, the observing system should
be able to search for the characteristic objects in
the observed landscape and give the control system
their coordinates and estimate the distances be-
tween them. Of course, the issue of providing an
exellent image and determining the metric proper-
ties of the observed images are connected, and in
no case cancel one another. However, what a hu-
man operator does automatically basing on a suffi-
ciently high-quality image of the terrain, the read-
ings of other sensors and undoubtedly on previous
experience, the control system algorithm must do
by using data from video and other systems, with
the same accuracy as the human operator [5].

Mathematical Model Construction

In the given example we will talk about the UAV
horizontal motion, in other words, we will look
through the problem of 2d localization [2]. In our
case, this is justified by the facts that for many sit-
uations that are practically encountered, the UAV
can remain at about the same height. This suppo-
sition is widely used to simplify the modeling of
aircraft dynamics [2]. Dynamic UAV model is
given by the following system of equations:

x(2) = v(r)cosn(?),
y(1)=v()sinn(),

n(@) = o),
o) =€ (1), (1)
V(1) =¢ (1),

where {x(¢), y(f)} are the UAV coordinates in hor-
izontal plane as the function of time, n(¢) is the
UAV direction, o(?) is the UAV angular velocity,
and w(¢) is the UAV actual velocity, €,(.) and €,(.)
functions are constant.

They are mutually independent with the cer-
tain covariances E[g,(?) €,(S)] and E[g,(?) €,(S)]
equal to Q,6(¢ — s) and Q,6(t — s) respectively and
are used for modeling of the UAV acceleration
caused by the wind, pilots” maneuvers, etc. Q,, and
0, values are the derivatives of the UAV maxi-
mum angular velocity and measured values of the
UAV linear velocity variation § is the Kronecker
sign.

The given system of equations is approximate
because of nonlinearity of the model and the
noise. The simplest way of approximation here is
the approximation by Euler method. The discrete
model of the dynamic UAV motion system is
shown below.

Xpo = X + VAl cosmy,

Vier1 = Vi VAt sinmy,

Niest = Nge T OAL,

Op 41 =Of T8 15 )

Vi =V &, s

where 0, = [x;, Vi, Mp Op Vi) 1S the discrete state
vector of the Kalman filter, which allows one to
approximate the value of the continuous state vec-
tor. At is the time interval between k and k + /
measurements. {€, .} and {g, s} is the sequences
of values of white Gaussian noise with zero mean
value.

The covariance matrix for the first sequence is
as follows [11]:

E{gw, ksw, j} = QmAtkslq'

Analogically, for the second sequence is

E{Sv, kgv,j} = QvAtkSkj
Performing the corresponding substitutions in
the system equations (2), we obtain:

Op 1 = O Yy 1A
Vierl = Vi T Yy Al -

The {Y;, s} and {Y’, ;} sequences are mutu-
ally independent. They are also the sequences of
values of white Gaussian noise with zero mean
value and the Q, and Q, covariance matrixes re-
spectively. The advantage of this configuration

3)
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is that is shows the discrete noise changing in
the interval between each measurement. As a re-

sult, we have the following discrete dynamic
model [8]:

1 0 0 0 Atcosn 0 0
01 0 0 Afsinn, 0 0
0,0=10 0 1 A 0 0,+ 0 0 (YW”‘J, 4)
000 I 0 JA 0 |\
000 0 1 0 AL,
%,—/
f16x] Uk

The equation for d, is as follows:

\/(xk _xo)2 +( _)/0)2

h|0,]

dy = +eg, (5

where x and y are the UAV coordinates at the k-time
and g, is the Gaussian sequence of random pa-
rameters with zero mean value which is used to
specify the error.

The given sequence is supposed to be inde-
pendent from {g, ,} and {g, ;}.

The equations (3) and (4) serve as a basis for
assessing the location of the UAV, where the coor-
dinates are obtained with the help of the Extended
Kalman filter. Simulating the failure of navigation
systems regarding this type of filter shows its sig-
nificant effectiveness [9].

To be clearer we will give a simple example.
Let an UAV fly at uniformly accelerated speed,
with some constant a-acceleration.

X, =X, +outdt +96,, (6)
z
¥
.
2 v
'
gﬂ J
0 2 7 X

Figure 1. Coordinate transformation. XYZ is the geocentric
coordinate system and X Y’Z’ is the local coordinate system

where x is the UAV coordinate at the # — time and
0 is a random value.

During the flight, the following GPS data
were collected: time, geocentric latitude, geocen-
tric longitude, altitude time of arrival, pulse width,
signal frequency and amplitude. The longitude,
latitude and height (LLH) coordinates recorded
by the UAV are not well suited for navigation and
tracking problems because linear motion becomes
non-linear in these coordinates. In comparison,
a local coordinate system whose X and Y axes are
in the local horizon and Z axis points to the local
Zenith is much better suited and is the industry
standard. Therefore, the geocentric latitude and
longitude location information is first converted
into a local coordinate system, which is shown in
Figure 1. X’Y’Z’ is the local coordinate system.
The origin of the local coordinate system is ran-
domly chosen to be the starting location of UAV.
In the figure, ¢ and y are the geocentric latitude
and longitude respectively. ¢ is the geodetic lati-
tude [12]. Refer to [13] for a detailed description
on how to convert the LLH coordinates into local
coordinates.

Let us suppose that we have a GPS-sensor,
which receives the data about the UAV location.
Let us perform the result of the modeling of this
process through MATLAB.

Simulation

At the present time, the UAV are not equipped
to determine inter-UAV distances; hence, as indi-
cated in the introduction, loss of a GPS connec-
tion is likely currently to be fatal. For this reason,
the real world data we use is entirely data ob-
tained when UAYV do actually have a GPS connec-
tion. From this data, we are able to simulate loss
of a GPS connection and acquisition of inter-UAV
distance measurements in the following way. A cer-

CUCTEMHBbIV AHAJIN3 U MPUKITAOHASI UHOOPMATUKA

1,2019



YnpasaeHue mexHuueckumu obvekmamu

29

45

35

251

20

Time Interval Between Adjacent GPS Measurement, Unit: s

1

1 1 1 1

1
200 400 600 800

1
1000 1200 1400 1600 1800

Number of GPS Measurements

Figure 2. Time interval between adjacent GPS measurements for UAV

Table 1. Steps of the simulations

Simulation | E(2 —z) | o(d—z) | E(§—y) | o(§ —y) E(d) o(d)
1 10.5836 36.3087 | -109167 | 38.1720 | 38.8275 | 48.2183
2 8.7661 45.6333 -11.7453 37.2149 | 37.2011 | 47.9382
3 10.9220 37.6161 -11.8613 38.5942 | 39.2297 | 49.7761
3 10.1834 62.1998 | -12.3481 301211 | 39.0115 | 64.9048
5 8.7462 50.1151 -12.1389 | 39.2946 | 39.4348 | 52.1936
6 9.2793 354631 -10.8837 | 37.9597 | 389082 | 46.8867
7 9.8450 554412 -12.0954 | 39.5770 | 40.1785 | 57.1734
3 7.2842 36.6786 | -12.2274 | 36.2379 | 38.4231 | 47.0972
9 9.2419 359712 -12.322] 37.8227 | 39.2994 | 47.2921
10 8.6330 525742 -12.3697 | 39.9224 | 40.1153 | 54.5532
Average 9.3490 49.8001 -11.8909 | 38.4917 | 39.0629 | 51.6033

tain time series of intervals of synthetic GPS out-
age is postulated. During these intervals, inter-UAV
distances are synthesized at discrete instants of
time. This is done by taking the actual GPS mea-
surements, determining the corresponding in-
ter-UAV distance, and then adding on to the re-
sulting value a Gaussian random variable with
zero mean and standard deviation of 10m. This is
delivered to the algorithm as a (synthesized) in-
ter-UAV distance, and the Kalman filter is run
with this data. Validation occurs by comparing the
estimated UAV tracks delivered by the Kalman
filter with those in the original real- world data,
where GPS measurements are actually available,
so that actual UAV tracks are known [14].

In the simulations, we assume that UAV has
a GPS connection most of the time but it may
temporarily lose the GPS connection for up to 54s
(see Figure 2).

In the simulation, the first two state variables
of the initial state vector are chosen to be the ini-

tial GPS location of UAV and other state variables
are chosen randomly. The initial value of P is cho-
sen based on an empirical estimate as P = diag {1000
1000 0.3 0.01 1}. It is found that generally the
choice of P has little impact on the filter perfor-
mance; however a very large deviation of P from
its true value does cause the divergence of the fil-
ter. The value of Q is chosen based on an empiri-
cal estimate as Q = diag{0.0003 10}. The choice
of Q is critical for the filter performance and Q
should be chosen carefully based on an in-depth
understanding of the UAV dynamics. The value of
R is chosen to be 100. In real applications, the val-
ue of R can be obtained via a priori calibration of
the distance measurement equipment. The dis-
tance measurement can be obtained by a simple
round trip timing mechanism [10].

The UAV location obtained from GPS is used
as the «true location» of the UAV. The path of
UAV starts from the rectangular on the right side
of the figure. Apparently, the estimated location
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Figure 4. Variation of error in y with Time

has larger error on this part of the figure. As time
evolves, the estimated location gradually con-
verges to the true location, which is evidenced by
much less deviation from the true location on the
left side of the figure. Figure 3 and 4 shows the
variation of error. As shown in the Table, both the
estimate of x and the estimate of y have a bias. As
a reference, the value of x varies within the range
of [-5000, 1000] and the value of y varies within
the range of [-6000, 3000]. Therefore, the value of
the bias is comparatively small. However, both

biases have a fairly consistent trend in all ten sim-
ulations [13].

Figure 5 shows the effectiveness of filtering
by Kalman algorithm. However, in a real situa-
tion, signals often have non-linear dynamics and
abnormal noise. In such cases, the extended Kal-
man filter is used. In case, if the noise variances
are not too large (i.e. the linear approximation is
adequate) the application of the extended Kalman
filter yields the solution of the problem with high
accuracy. But in case if the noise is not Gaussian
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Figure 5. Filtering the sensor reading with the help of Kalman filter

the extended Kalman filter mustn’t be applied. In
this case, a partial filter is usually used, which
uses numerical methods for taking integrals based
on Monte Carlo methods with Markov chains.

Partial Filter

Let us perform one of the algorithms, which
develop the ideas of the extended Kalman filter —
a partial filter. Partial filtering is a non-optimal fil-
tering method that works when performing
a Monte Carlo join on a set of particles that repre-
sent the probability distribution of the process.
Here a particle is an element taken from the a pri-
ori distribution of the estimated parameter. The
main idea of the partial filter is that the large
amount of particles can be used to represent the
distribution estimate. The larger the number of
particles is used, the more precise the set of parti-
cles will represent the a priori distribution. The
particle filter is initialized by placing N of parti-
cles in it from the a priori distribution of the pa-
rameters that we want to estimate. The filtering
algorithm involves running these particles through
a special system, and then weighing it using infor-
mation obtained from measuring these particles.
The resulting particles and associated masses rep-
resent the posterior distribution of the evaluation
process. The cycle is repeated for each new mea-
surement and the weights of the particles are up-
dated to represent the subsequent distribution.
One of the main problems of the traditional meth-
od of particle filtering is that as a result such an

approach usually has several particles with a huge
weight unlike most others with a very light
weight. It leads to the filtering instability [6]. This
problem can be solved by introducing a sampling
frequency, where N of new particles are taken
from a distribution composed of old particles. The
result of the evaluation is obtained by getting
a sample of the mean value of the particle set. If
we have several independent samples, the mean
sample will be an accurate estimate of the mean
value that determines the final variance.

Even if the particle filter is not optimal, then
as the number of particles tends to infinity, the ef-
ficiency of the algorithm approaches the Bayesian
estimation rule. That is why it is recommended to
have the possible number of particles to get the
best result. Unfortunately, this leads to a strong
increase in the computational complexity and
therefore forces us to seek a compromise between
accuracy and calculation speed. So the number of
particles should be chosen based on the require-
ments for the accuracy estimation problem. An-
other important factor for the operation of the par-
ticle filter is the restriction on the sampling fre-
quency. As mentioned earlier, the sampling fre-
quency is an important parameter of the particle
filtering and without it, the algorithm eventually
becomes degenerate. The idea is that if the
weights are distributed too unevenly and the sam-
pling threshold is soon reached, then the low-
weight particles are discarded, and the remaining
set forms a new probabilistic density for which
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new samples can be taken. Choosing a sampling
frequency threshold is a rather difficult task, be-
cause too high frequency causes excessive filter
sensitivity to noise, and too low one gives a large
error. Another important factor is the probability
density [11].

In general, the particle filter algorithm shows
a good productivity of location calculation for sta-
tionary targets and in the case of relatively slow
moving targets with unknown acceleration dy-
namics. Generally, the particle-filtering algorithm
is more stable than the extended Kalman filter,
and is less prone to the degeneration and serious
failures. In cases of nonlinear, non-Gaussian dis-
tribution, this filtering algorithm shows a very
good accuracy in determining the target location
while the extended Kalman filtering algorithm
cannot be used under such conditions. One of the
disadvantages of this approach is its higher com-
plexity compared with the extended Kalman filter,
as well as the fact that it is not always obvious
how to select the parameters for this algorithm
correctly [12].

Optimal estimation of a random process

In contrast to common approaches based on
consideration as a criterion for optimizing the
minimum of the mean square error of estimation,
in this case the maximum of a posteriori probabil-
ity density of the evaluated process is considered
as an optimization criterion. The a priori probabil-
ity density of the evaluated process is initially
considered to be a Gaussian differentiable func-
tion, which allows it to be expanded in a Taylor
series without using in the intermediate transfor-
mations the characteristic functions and decom-
position into harmonics. For small time intervals,
the probability density of the measurement error
vector is defined by definition also Gaussian with
zero mathematical expectation. This makes it pos-
sible to obtain a mathematical expression for the
discrepancy function characterizing the deviation
of the values of the real measurement of the pro-
cess from its mathematical model. To determine
the optimal a posteriori estimate of the state vec-
tor, it is assumed that this estimate corresponds to
its mathematical expectation, the maximum of the
posterior probability density. This makes it possi-
ble to derive the Stratonovich-Kouchner equation
on the basis of the Bayesian formula for the a pri-
ori and a posteriori probability density. The use of

the Stratonovich-Kushner equation for various
types and values of the drift vector and the diffu-
sion matrix of the Markov stochastic process
makes it possible to solve various problems of fil-
tering, identification, smoothing, and forecasting
the state of the system for both continuous and
discrete systems. The discrete realization of the
developed continuous algorithms for a posteriori
estimation allows obtaining specific discrete algo-
rithms for the implementation in the on-board
computer of a mobile robotic system [7].

Prospective researches in this field

The use of the Kalman filter model, similar to
what we have shown, can be seen in [3], where it
is used to improve the characteristics of the com-
plex system (GPS + computer vision model for
comparison with the geographic base), and the
satellite navigation equipment failure situation is
simulated. With the help of the Kalman filter the
results of the system operation in case of failure
were significantly improved (for example, the er-
ror in determining the altitude was reduced by
about half, and the errors in determining the coor-
dinates along different axes were reduced by al-
most 9 times). The analogical use of the Kalman
filter is also shown in [4].

The problem, which is interesting from the
point of view of the method set, is solved in [1].
There is also used a Kalman filter with 5 states,
with some differences in the construction of the
model. The result obtained exceeds the result of
the given model given [5] due to the use of addi-
tional means of integration, (photo and thermal
images are used). The application of the Kalman
filter in this case makes it possible to reduce the
error in determining the spatial coordinates of
a given point to a value of 5.5 m.

Conclusion

As a conclusion, we can note that the use of
the Kalman filter in the UAV location systems is
practiced in many modern developments. There is
a huge number of variances and aspects of such
use up to simultaneous application of several sim-
ilar filters with different factors of states. One of
the most promising trends in Kalman filter devel-
opment is working on creating a modified filter,
where the errors of will be represented by color
noise, which will make it even more valuable for
solving real problems. The great interest in this
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area is a partial filter by means of which it is pos-  lite navigation systems, are the main factors of the
sible to filter non-Gaussian noise. The given vari-  impact of this technology on various scientific fields
ety and the tangible results in increasing accuracy, related to the development of accurate and fault-tol-
especially in case of the failure of standard satel-  erant navigation systems for various aircrafts.
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APEDBEB H. H.

OUNBTP KAAMAHA AN ONTUMAABHOIO NMOAYYEHUA KOOPAUHAT
BECMUNOTHbIX AETATEAbHbIX AMNMAPATOB

benopycckuii nayuonanshulii mexnuieckuti ynugepcumem

B cmamve 0aémes kraccu@urayus OCHOBHbIX KOMIOHEHMO8 cucmem 6ecnuiomuozo iemamenvHoo annapama (bJIA),
odaémca obocrosanue urempy Karmana u Heobxooumocms ucnonb3068anus e2o 0isk MOYHO20 NOIYYeHUs KOOPOUHAm becnu-
JIOMHBIX JlemamenvHulx annapamos. Becnunomuvle nemamenvhvie annapamul (BIIJTIA) 6ce uawe ucnonv3yomes 6 60eHHbIX
u HayuHwlx uccrnedosanuil. Hexomopwie munuamiopnvie BITJIA nonazaromesi nOTHOCmbIO HA 2100AIbHOU cucmeme NO3UYUOHU-
posanus (GPS). GPS ysaseum 014 ciyuaiino2o unu npeoHamepeHH020 BMeuamenbCmea umo Mo}cen npusecmu K e2o cooio.
Jna BI1JIA, nonazarowuxca uckaoyumenvno wa GPS 0na nHasueayuu makoe codvimue modxcem Obimb KamacmpopuuecKum.
B nacmosiwem ooxymenme npeonazaemcs pacuiupernulii nooxoo gunvmpa Kaimana ons oyenku mecmononosxcerust bI1LJIA,
Koeda e2o GPS-coedunenue nomepsano. Ilpusooumces anvmepuamusHoe UCHOIb308aHUe YACMUYHO20 Puabmpa. B konye dena-
emcst 861600 0 HEODXOOUMBIX HANPABTIEHUAX OANbHEUUUX HAYUHBIX UCCTe008AHULL.

Kniouesnle cnosa: Gecnunomuolii iemamenvHvill annapam, mamemamuieckoe mooeruposanue, guromp Kaimana, GPS,
KOHMPOILb, HAGUSAYUSL, UHMESPAYUs], 2eOMEMPUST OBUICEHUSL.

Apedne H. H. Actiupant xadenpsl «MTHPpOpMaIMOHHBIE CUCTEMBI U TEXHO-
jorun» benopycckoro HallMOHAJIBHOIO TEXHUYECKOro yHuBepcuteTa. [lomyumn
BbIcIee 00pa30BaHUE U OKOHUWJI MarucTparypy 1o HampasieHuto « THpopmamm-
OHHEBIC cucTeMbl U TexHojiorum» B 2014 u 2015 romax coorBeTcTBeHHO. Ha nan-
HBIH MOMEHT aCHMpaHT BeAET MCCIIEIOBaHMS B HalpaBleHUAX LU(poBoil oOpa-
OOTKM CHTHAJIOB M CHCTEM YIIPaBJICHUH, BKIIOYAsl MapaMETPUUECKYIO ONITUMM3a-
LUIO CUCTEM M IporpammupoBanue. lHTepecs! B nienoM kacarorea UT, nporpam-
MHUPOBaHHUS U POOACTHOTO YIIPABIICHUSI.
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